Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colistin is a last-resort antibiotic in fighting severe infections caused by multidrug resistant Gram negative pathogens in hospitals. Zoonotic bacteria acquire colistin resistance in animal reservoirs and mediate its spread along the food chain. This is the case of non-typhoid serovars of . Colistin-resistant in foods represents a threat to human health. Here, we assessed the prevalence of colistin-resistance in food-borne isolates of (2014-2019; Asturias, Spain), and established the genetic basis and transferability of this resistance. Five out of 231 isolates tested (2.2%) were resistant to colistin. Four of them, belonging to the European monophasic ST34 clone of . Typhimurium, were characterized in the present study. They were collected from pork or pork and beef meat-derived products, either in 2015 (three isolates) or 2019 (one isolate). Molecular typing with XbaI-PFGE and plasmid profiling revealed distinct patterns for each isolate, even though two of the 2015 isolates derived from the same sample. The MICs of colistin ranged from 8 to 16 mg/L. All isolates carried the gene located on conjugative plasmids of the incompatibility groups IncX4 (2015 isolates) or IncHI2 (2019 isolate). Apart from colistin resistance, the four isolates carried chromosomal genes conferring resistance to ampicillin, streptomycin, sulfonamides and tetracycline [ , , , and (B)] and heavy metals, including copper and silver ( and ), arsenic () ± mercury (), which are characteristically associated with the European ST34 monophasic clone. The 2019 isolate was also resistant to other antibiotics, comprising third generation cephalosporins and cephamycins. The latter phenotype was conferred by the gene located on an IncI1-I(α)-ST2 plasmid. Results in the present study identified meat-derived products as a reservoir of a highly successful clone harboring transferable plasmids which confer resistance to colistin and other clinically important antibiotics. An important reduction in the number of food-borne detected during the period of the study, together with the low frequency of colistin resistance, underlines the success of One Health initiatives, such as those implemented at the UE, to control zoonotic bacteria along the food chain and to halt the spread of antimicrobial resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770973PMC
http://dx.doi.org/10.3389/fmicb.2021.735364DOI Listing

Publication Analysis

Top Keywords

colistin resistance
16
meat-derived products
12
2019 isolate
12
colistin
8
isolates
8
zoonotic bacteria
8
food chain
8
2015 isolates
8
isolates carried
8
gene located
8

Similar Publications

Asymmetric volume-mediated buffer control overcomes sensitivity limits in one-pot RAA-CRISPR/Cas12a visual detection.

Anal Bioanal Chem

September 2025

Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.

Rapid, low-cost, and visual nucleic acid detection methods are highly attractive for curbing colistin resistance spread through the food chain. CRISPR/Cas12a combined with recombinase-aided amplification (RAA) offers a one-pot, aerosol-free approach for visual detection. However, traditional one-pot systems often run Cas12a trans-cleavage in a buffer suitable for RAA, thus limiting Cas12a cleavage efficiency.

View Article and Find Full Text PDF

Background And Objectives: Copper is an essential micronutrient and a widely used antimicrobial, yet its widespread application may accelerate microbial resistance. We investigated how long-term copper (II) sulfate (CuSO₄) exposure drives genetic and phenotypic changes in , focusing on survival, resistance mechanisms, and antibiotic cross-resistance.

Methodology: Fifty populations were evolved for 55 days under progressively increasing CuSO₄ concentrations.

View Article and Find Full Text PDF

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Comparison of clinical manifestations, antimicrobial susceptibility patterns, and carbapenem resistance determinants between Acinetobacter seifertii and Acinetobacter nosocomialis isolated in Taiwan.

J Microbiol Immunol Infect

August 2025

Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. Electronic address:

Background: Acinetobacter seifertii, a recently identified member of the Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex, has emerged as a cause of severe human infections. It is closely related to Acinetobacter nosocomialis, a major pathogen of the Acb complex. Here, we aimed to explore the clinical and molecular differences between these two species.

View Article and Find Full Text PDF

Co-existence of mcr-1 and bla from porcine-derived Escherichia coli isolated in China and selection of mcr-1 under cephalosporins pressure.

J Glob Antimicrob Resist

September 2025

Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, Jilin 130122, China. Electronic address:

Objectives: The usage of cephalosporins (CEFs) and co-existence of extended-spectrum β-lactamase (ESBL) gene bla in the same host may promote the prevalence of colistin (CST) resistance gene mcr-1. This study aims to investigate the underlying mechanisms how the mcr-1 and bla demonstrate significant co-occurrence in Escherichia coli (E. coli).

View Article and Find Full Text PDF