A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Surface-Enhanced Raman Spectroscopy (SERS) is often used for heavy metal ion detection. However, large variations in signal strength, spectral profile, and nonlinearity of measurements often cause problems that produce varying results. It raises concerns about the reproducibility of the results. Consequently, the manual classification of the SERS spectrum requires carefully controlled experimentation that further hinders the large-scale adaptation. Recent advances in machine learning offer decent opportunities to address these issues. However, well-documented procedures for model development and evaluation, as well as benchmark datasets, are missing. Towards this end, we provide the SERS spectral benchmark dataset of lead(II) nitride (Pb(NO)) for a heavy metal ion detection task and evaluate the classification performance of several machine learning models. We also perform a comparative study to find the best combination between the preprocessing methods and the machine learning models. The proposed model can successfully identify the Pb(NO) molecule from SERS measurements of independent test experiments. In particular, the proposed model shows an 84.6% balanced accuracy for the cross-batch testing task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778908PMC
http://dx.doi.org/10.3390/s22020596DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
metal ion
12
ion detection
12
machine learning
12
surface-enhanced raman
8
raman spectroscopy
8
learning models
8
proposed model
8
machine
4
machine learning-based
4

Similar Publications