98%
921
2 minutes
20
Swimming organisms may actively adjust their behavior in response to the flow around them. Ocean flows are typically turbulent and are therefore characterized by chaotic velocity fluctuations. While some studies have observed planktonic larvae altering their behavior in response to turbulence, it is not always clear whether a plankter is responding to an individual turbulence fluctuation or to the time-averaged flow. To distinguish between these two paradigms, we conducted laboratory experiments with larvae in turbulence. We observed veliger larvae of the gastropod Crepidula fornicata in a jet-stirred turbulence tank while simultaneously measuring two components of the fluid and larval velocity. Larvae were studied at two different stages of development, early and late, and their behavior was analyzed in response to different characteristics of turbulence: acceleration, dissipation and vorticity. Our analysis considered the effects of both the time-averaged flow and the instantaneous flow, around the larvae. Overall, we found that both stages of larvae increased their upward swimming speeds in response to increasing turbulence. However, we found that the early-stage larvae tended to respond to the time-averaged flow, whereas the late-stage larvae tended to respond to the instantaneous flow around them. These observations indicate that larvae can integrate flow information over time and that their behavioral responses to turbulence can depend on both their present and past flow environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.243209 | DOI Listing |
Acta Neurochir (Wien)
September 2025
Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
Background: Identifying haemodynamic factors associated with thin-walled regions (TWRs) of intracranial aneurysms is critical for improving pre-surgical rupture risk assessment. Intraoperatively, these regions are visually distinguished by a red, translucent appearance and are considered highly rupture prone. However, current imaging modalities lack the resolution to detect such vulnerable areas preoperatively.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Division of Vascular and Transplant Surgery, Department of Surgery, The Catholic University of Korea, Seoul, Republic of Korea.
Background: Abdominal aortic aneurysm (AAA) rupture is a life-threatening event traditionally predicted by aneurysm diameter. However, many clinical observations have revealed that rupture can occur even in small aneurysms, suggesting the influence of additional biomechanical factors such as hemodynamics. The aim of this case series was to perform computational fluid dynamics (CFD) analyses based on CT scans of patients with confirmed abdominal aortic aneurysm rupture and to evaluate correlations between rupture sites and hemodynamic factors derived from simulations.
View Article and Find Full Text PDFJ Biomech
August 2025
Department of Mechanical Engineering, Korea National University of Transportation (KNUT), Daehak-ro 50, Chungju-si, Chungcheongbuk-do, South Korea. Electronic address:
The morphological vulnerability of atherosclerotic plaques, such as fluttering motion under pulsatile flow, poses diagnostic challenges in conventional fractional flow reserve (FFR) assessment. In this study, we investigate the hemodynamic impact of a fluttering plaque using a physical model of mild (40%) stenosis with and without an elastic plaque under stenotic flow. High-speed particle image velocimetry (PIV) and differential pressure measurements were employed to characterize flow patterns and pressure drop waveforms.
View Article and Find Full Text PDFPulsating airflow jets delivered via nasal cannula offer a promising, comfortable, non-invasive alternative to continuous positive airway pressure (CPAP) for treating obstructive sleep apnea (OSA). However, the fluid dynamic mechanisms by which pulsatile flow influences upper airway pressure remain poorly understood in anatomically realistic geometries. This study used large eddy simulations (LES) to examine pressure and flow characteristics of pulsating nasal jets within a patient-specific upper airway model.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.
Background: Intracranial aneurysms, particularly saccular types, are localized dilations of cerebral vessels prone to rupture, leading to life-threatening complications such as subarachnoid hemorrhage.
Purpose: This study aimed to characterize the localized hemodynamic environment within the aneurysm dome and evaluate how spatial interactions among key flow parameters contribute to rupture risk, using a synergistic analytical framework.
Methods: We applied the targeted evaluation of synergistic links in aneurysms (TESLA) framework to analyze 18 intracranial aneurysms from 15 patients.