Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Rotator cuff tears (RCTs) are one of the most common shoulder injuries, which are typically diagnosed using relatively expensive and time-consuming diagnostic imaging tests such as magnetic resonance imaging or computed tomography. Deep learning algorithms are increasingly used to analyze medical images, but they have not been used to identify RCTs with ultrasound images. The aim of this study is to develop an approach to automatically classify RCTs and provide visualization of tear location using ultrasound images and convolutional neural networks (CNNs). The proposed method was developed using transfer learning and fine-tuning with five pre-trained deep models (VGG19, InceptionV3, Xception, ResNet50, and DenseNet121). The Bayesian optimization method was also used to optimize hyperparameters of the CNN models. A total of 194 ultrasound images from Kosin University Gospel Hospital were used to train and test the CNN models by five-fold cross-validation. Among the five models, DenseNet121 demonstrated the best classification performance with 88.2% accuracy, 93.8% sensitivity, 83.6% specificity, and AUC score of 0.832. A gradient-weighted class activation mapping (Grad-CAM) highlighted the sensitive features in the learning process on ultrasound images. The proposed approach demonstrates the feasibility of using deep learning and ultrasound images to assist RCTs' diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-022-02502-6 | DOI Listing |