A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network. | LitMetric

Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network.

Int J Legal Med

Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, 1347 GuangFu West Road, Shanghai, 200063, People's Republic of China.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the forensic estimation of bone age, the pelvis is important for identifying the bone age of teenagers. However, studies on this topic remain insufficient as a result of lower accuracy due to the overlapping of pelvic organs in X-ray images. Segmentation networks have been used to automate the location of key pelvic areas and minimize restrictions like doubling images of pelvic organs to increase the accuracy of estimation. This study conducted a retrospective analysis of 2164 pelvis X-ray images of Chinese Han teenagers ranging from 11 to 21 years old. Key areas of the pelvis were detected with a U-Net segmentation network, and the findings were combined with the original X-ray image for regional augmentation. Bone age estimation was conducted with the enhanced and not enhanced pelvis X-ray images by separately using three convolutional neural networks (CNNs). The root mean square errors (RMSE) of the Inception-V3, Inception-ResNet-V2, and VGG19 convolutional neural networks were 0.93 years, 1.12 years, and 1.14 years, respectively, and the mean absolute errors (MAE) of these networks were 0.67 years, 0.77 years, and 0.88 years, respectively. For comparison, a network without segmentation was employed to conduct the estimation, and it was found that the RMSE of the three CNNs above became 1.22 years, 1.25 years, and 1.63 years, respectively, and the MAE became 0.93 years, 0.96 years, and 1.23 years. Bland-Altman plots and attention maps were also generated to provide a visual comparison. The proposed segmentation network can be used to reduce the influence of restrictions like image overlapping of organs and can thus increase the accuracy of pelvic bone age estimation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00414-021-02746-1DOI Listing

Publication Analysis

Top Keywords

bone age
20
age estimation
12
convolutional neural
12
x-ray images
12
pelvic organs
8
organs increase
8
increase accuracy
8
pelvis x-ray
8
segmentation network
8
neural networks
8

Similar Publications