Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In the forensic estimation of bone age, the pelvis is important for identifying the bone age of teenagers. However, studies on this topic remain insufficient as a result of lower accuracy due to the overlapping of pelvic organs in X-ray images. Segmentation networks have been used to automate the location of key pelvic areas and minimize restrictions like doubling images of pelvic organs to increase the accuracy of estimation. This study conducted a retrospective analysis of 2164 pelvis X-ray images of Chinese Han teenagers ranging from 11 to 21 years old. Key areas of the pelvis were detected with a U-Net segmentation network, and the findings were combined with the original X-ray image for regional augmentation. Bone age estimation was conducted with the enhanced and not enhanced pelvis X-ray images by separately using three convolutional neural networks (CNNs). The root mean square errors (RMSE) of the Inception-V3, Inception-ResNet-V2, and VGG19 convolutional neural networks were 0.93 years, 1.12 years, and 1.14 years, respectively, and the mean absolute errors (MAE) of these networks were 0.67 years, 0.77 years, and 0.88 years, respectively. For comparison, a network without segmentation was employed to conduct the estimation, and it was found that the RMSE of the three CNNs above became 1.22 years, 1.25 years, and 1.63 years, respectively, and the MAE became 0.93 years, 0.96 years, and 1.23 years. Bland-Altman plots and attention maps were also generated to provide a visual comparison. The proposed segmentation network can be used to reduce the influence of restrictions like image overlapping of organs and can thus increase the accuracy of pelvic bone age estimation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00414-021-02746-1 | DOI Listing |