A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds. | LitMetric

An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds.

Brief Bioinform

National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China.

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate simulation of protein folding is a unique challenge in understanding the physical process of protein folding, with important implications for protein design and drug discovery. Molecular dynamics simulation strongly requires advanced force fields with high accuracy to achieve correct folding. However, the current force fields are inaccurate, inapplicable and inefficient. We propose a machine learning protocol, the inductive transfer learning force field (ITLFF), to construct protein force fields in seconds with any level of accuracy from a small dataset. This process is achieved by incorporating an inductive transfer learning algorithm into deep neural networks, which learn knowledge of any high-level calculations from a large dataset of low-level method. Here, we use a double-hybrid density functional theory (DFT) as a case functional, but ITLFF is suitable for any high-precision functional. The performance of the selected 18 proteins indicates that compared with the fragment-based double-hybrid DFT algorithm, the force field constructed by ITLFF achieves considerable accuracy with a mean absolute error of 0.0039 kcal/mol/atom for energy and a root mean square error of 2.57 $\mathrm{kcal}/\mathrm{mol}/{\AA}$ for force, and it is more than 30 000 times faster and obtains more significant efficiency benefits as the system increases. The outstanding performance of ITLFF provides promising prospects for accurate and efficient protein dynamic simulations and makes an important step toward protein folding simulation. Due to the ability of ITLFF to utilize the knowledge acquired in one task to solve related problems, it is also applicable for various problems in biology, chemistry and material science.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbab590DOI Listing

Publication Analysis

Top Keywords

force fields
16
inductive transfer
12
transfer learning
12
force field
12
protein folding
12
force
8
learning force
8
field itlff
8
protein force
8
fields seconds
8

Similar Publications