A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Symmetric positive definite manifold learning and its application in fault diagnosis. | LitMetric

Symmetric positive definite manifold learning and its application in fault diagnosis.

Neural Netw

School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China. Electronic address:

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Locally linear embedding (LLE) is an effective tool to extract the significant features from a dataset. However, most of the relevant existing algorithms assume that the original dataset resides on a Euclidean space, unfortunately nearly all the original data space is non-Euclidean. In addition, the original LLE does not use the discriminant information of the dataset, which will degrade its performance in feature extraction. To address these problems raised in the conventional LLE, we first employ the original dataset to construct a symmetric positive definite manifold, and then estimate the tangent space of this manifold. Furthermore, the local and global discriminant information are integrated into the LLE, and the improved LLE is operated in the tangent space to extract the important features. We introduce Iris dataset to analyze the capability of the proposed method to extract features. Finally, several experiments are performed on five machinery datasets, and experimental results indicate that our proposed method can extract the excellent low-dimensional representations of the original dataset. Compared with the state-of-the-art methods, the proposed algorithm shows a strong capability for fault diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2021.12.013DOI Listing

Publication Analysis

Top Keywords

extract features
12
original dataset
12
symmetric positive
8
positive definite
8
definite manifold
8
fault diagnosis
8
tangent space
8
proposed method
8
method extract
8
dataset
6

Similar Publications