Cardiovascular mechanisms underlying vocal behavior in freely moving macaque monkeys.

iScience

Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Communication is a keystone of animal behavior. However, the physiological states underlying natural vocal signaling are still largely unknown. In this study, we investigated the correlation of affective vocal utterances with concomitant cardiorespiratory mechanisms. We telemetrically recorded electrocardiography, blood pressure, and physical activity in six freely moving and interacting cynomolgus monkeys (). Our results demonstrate that vocal onsets are strengthened during states of sympathetic activation, and are phase locked to a slower Mayer wave and a faster heart rate signal at ∼2.5 Hz. Vocalizations are coupled with a distinct peri-vocal physiological signature based on which we were able to predict the onset of vocal output using three machine learning classification models. These findings emphasize the role of cardiorespiratory mechanisms correlated with vocal onsets to optimize arousal levels and minimize energy expenditure during natural vocal production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749184PMC
http://dx.doi.org/10.1016/j.isci.2021.103688DOI Listing

Publication Analysis

Top Keywords

freely moving
8
natural vocal
8
cardiorespiratory mechanisms
8
vocal onsets
8
vocal
7
cardiovascular mechanisms
4
mechanisms underlying
4
underlying vocal
4
vocal behavior
4
behavior freely
4

Similar Publications

Disrupted calcium dynamics and electrophysiological activity in the stratum pyramidale and hippocampal alveus during fear conditioning in the 5xFAD model of Alzheimer's disease.

Front Aging Neurosci

August 2025

Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia.

Alzheimer's disease (AD) is a neurodegenerative disorder that leads to progressive cognitive decline and significant disruptions in hippocampal neural networks, critically impacting memory and learning. Understanding the neural mechanisms underlying these impairments is essential for developing effective therapies. The 5xFAD mouse model, known for progressive neurodegeneration and cognitive deficits, provides a valuable platform for investigating associative learning and memory impairments related to AD.

View Article and Find Full Text PDF

We consider a two-Patch malaria model, where the individuals can freely move between the patches. We assume that one site has better resources to fight the disease, such as screening facilities and the availability of transmission-blocking drugs (TBDs) that offer full, though waning, immunity and non-infectivity. Moreover, individuals moving to this site are screened at the entry points, and the authorities can either refuse entry to infected individuals or allow them in but immediately administer a TBD.

View Article and Find Full Text PDF

Recent advancements in implantable bioelectronic devices have increased the demand for biocompatible energy sources with long-term electrochemical and mechanical stability. Here, we present a tough hydrogel-based supercapacitor (THBS) fiber, fabricated via a thermal drawing process (TDP), that enables the integration of all components-electrodes, electrolyte, current collectors, and encapsulation-into a single, unified, and mechanically robust fiber-shaped architecture. Through thermal/mechanical optimization and the incorporation of self-healing properties, THBS fibers exhibit durable, high electrochemical performance under dynamic, high-curvature deformations mimicking in vivo physiological motions.

View Article and Find Full Text PDF

Vocal communication is a complex social behavior that entails the integration of auditory perception and vocal production. Both anatomical and functional evidence have implicated the anterior cingulate cortex (ACC), including area 32, in these processes, but the dynamics of neural responses in area 32 during naturalistic vocal interactions remain poorly understood. Here, we addressed this by recording the activity of single area 32 neurons using chronically implanted ultra high density Neuropixels probes in freely moving male common marmosets () engaged in an antiphonal calling paradigm in which they exchanged long-distance "phee" calls with a virtual conspecific.

View Article and Find Full Text PDF

Miniaturized implantable optoelectronic technologies for in vivo biomedical applications are gaining interest, but require strict thermal management for safe operation. Here, we introduce a comprehensive framework combining analytical solutions and numerical modeling to estimate and manage thermal effects of optoelectronic devices. We propose Green's functions to analytically solve temperature distributions in tissue from a point source with coupled thermal-optical power, capturing the influence of critical tissue properties and spatiotemporal parameters.

View Article and Find Full Text PDF