A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

GPS-based fine-scale mapping surveys for schistosomiasis assessment: a practical introduction and documentation of field implementation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Fine-scale mapping of schistosomiasis to guide micro-targeting of interventions will gain importance in elimination settings, where the heterogeneity of transmission is often pronounced. Novel mobile applications offer new opportunities for disease mapping. We provide a practical introduction and documentation of the strengths and shortcomings of GPS-based household identification and participant recruitment using tablet-based applications for fine-scale schistosomiasis mapping at sub-district level in a remote area in Pemba, Tanzania.

Methods: A community-based household survey for urogenital schistosomiasis assessment was conducted from November 2020 until February 2021 in 20 small administrative areas in Pemba. For the survey, 1400 housing structures were prospectively and randomly selected from shapefile data. To identify pre-selected structures and collect survey-related data, field enumerators searched for the houses' geolocation using the mobile applications Open Data Kit (ODK) and MAPS.ME. The number of inhabited and uninhabited structures, the median distance between the pre-selected and recorded locations, and the dropout rates due to non-participation or non-submission of urine samples of sufficient volume for schistosomiasis testing was assessed.

Results: Among the 1400 randomly selected housing structures, 1396 (99.7%) were identified by the enumerators. The median distance between the pre-selected and recorded structures was 5.4 m. A total of 1098 (78.7%) were residential houses. Among them, 99 (9.0%) were dropped due to continuous absence of residents and 40 (3.6%) households refused to participate. In 797 (83.1%) among the 959 participating households, all eligible household members or all but one provided a urine sample of sufficient volume.

Conclusions: The fine-scale mapping approach using a combination of ODK and an offline navigation application installed on tablet computers allows a very precise identification of housing structures. Dropouts due to non-residential housing structures, absence, non-participation and lack of urine need to be considered in survey designs. Our findings can guide the planning and implementation of future household-based mapping or longitudinal surveys and thus support micro-targeting and follow-up of interventions for schistosomiasis control and elimination in remote areas. Trial registration ISRCTN, ISCRCTN91431493. Registered 11 February 2020, https://www.isrctn.com/ISRCTN91431493.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761264PMC
http://dx.doi.org/10.1186/s40249-021-00928-yDOI Listing

Publication Analysis

Top Keywords

housing structures
16
fine-scale mapping
12
schistosomiasis assessment
8
practical introduction
8
introduction documentation
8
mobile applications
8
randomly selected
8
median distance
8
distance pre-selected
8
pre-selected recorded
8

Similar Publications