Interfacial Effect of Hydration Structures of Hydroxyapatite Nanoparticle Films on Protein Adsorption and Cell Adhesion States.

ACS Appl Bio Mater

Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The synthesized elliptical hydroxyapatite (E-HAp) and needle-like HAp (N-HAp) nanoparticles (NPs) were electrophoretically deposited on a gold (Au) substrate. A comparative study of the hydration layers on E-HAp, N-HAp, and Au films was achieved to investigate the interfacial effect of the hydration layers on the conformation of the adsorbed fibrinogen (Fgn) and fibroblast adhesion properties. As a result, the ratios of three types of hydration layer states (free water, intermediate water, nonfreezing water) analyzed by a Fourier transform infrared (FT-IR) spectral deconvolution of the O-H stretching absorption band were investigated. The ratio of the bonding water state (i.e., intermediate and nonfreezing water molecules) is almost the same between two HAp films, and the E-HAp film with an elliptical shape and smaller particle size exhibited the smallest ratio of nonfreezing water, which can suppress the denaturation of the adsorbed protein. Subsequently, FT-IR spectral deconvolution results of the amide I band of the adsorbed Fgn on the E-HAp film indicated the higher proportion of α-helix and β-sheet structures as compared with those on the N-HAp and Au films, suggesting that the smaller proportion of nonfreezing waters would play a significant role in the stereoscopic Fgn conformation. In the culture of fibroblasts, FT-IR spectra of the adhered cells on the E-HAp, N-HAp, and Au films exhibited different absorbance intensities of the amide A, I, II, and III bands, suggesting a different amount of collagen-producing states by the cells, which were also supported by immunostaining results of the collagen type I. Therefore, the different hydration structures on the films clearly influenced the conformation of the adsorbed protein, and the preferential conformation was found at the interfaces between the fibroblasts and the underground E-HAp films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.9b00629DOI Listing

Publication Analysis

Top Keywords

n-hap films
12
nonfreezing water
12
interfacial hydration
8
hydration structures
8
hydration layers
8
e-hap n-hap
8
conformation adsorbed
8
ft-ir spectral
8
spectral deconvolution
8
e-hap film
8

Similar Publications

The present study focuses on improving the flexibility of PLA by reinforcing it with a nanohydroxyapatite (n-HAp) filler. The n-HAp was synthesized via pink perch fish scales (PPFS) using a simple and feasible pyrolysis method and was characterized using XRD, FTIR, Raman spectroscopy, TGA, SEM, and TEM. n-Hap of 0.

View Article and Find Full Text PDF

The synthesized elliptical hydroxyapatite (E-HAp) and needle-like HAp (N-HAp) nanoparticles (NPs) were electrophoretically deposited on a gold (Au) substrate. A comparative study of the hydration layers on E-HAp, N-HAp, and Au films was achieved to investigate the interfacial effect of the hydration layers on the conformation of the adsorbed fibrinogen (Fgn) and fibroblast adhesion properties. As a result, the ratios of three types of hydration layer states (free water, intermediate water, nonfreezing water) analyzed by a Fourier transform infrared (FT-IR) spectral deconvolution of the O-H stretching absorption band were investigated.

View Article and Find Full Text PDF

Here, TiO nanoparticles have been doped into the polymer film-construct of Chitosan/poly (vinyl alcohol)/Nano-hydroxyapatite (CPHT I - III) to enhance the mechanical and biological properties of the film so as to mimic the human bone extracellular matrix for application in human bone regeneration. The synthesized films are highly porous in nature along with the presence of macrovoids. Significantly enhanced mechanical properties were obtained upon the addition of TiO in comparison to previous literature.

View Article and Find Full Text PDF