A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Recent Progress in Iron Oxide Nanoparticles as Therapeutic Magnetic Agents for Cancer Treatment and Tissue Engineering. | LitMetric

Recent Progress in Iron Oxide Nanoparticles as Therapeutic Magnetic Agents for Cancer Treatment and Tissue Engineering.

ACS Appl Bio Mater

Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The positive response of superparamagnetic iron oxide nanoparticles (SPIONs), in terms of biodegradability, circulation, elimination, toxicity, and manipulation of their structure/activity relationship, has enabled them to find their way into commercialization as an iron supplement, MRI contrast agents, MPI tracers, and hyperthermia and magneto-mechanical actuators. This Review focuses on the most current progress regarding the application of SPIONs as magnetic therapeutic agents for cancer treatment and tissue engineering. Because of their superior magnetic anisotropy, irreversibility of high- and low-field magnetization, and superparamagnetic ordering at corporal temperatures, they exhibit the unique ability to respond to theraputic doses (e.g., in magnetic hyperthermia and targeted drug delivery). This Review discusses the role of SPIONs to enhance chemotherapy and radiotherapy efficiency and specificity and how this enhancement could mitigate some side effects. SPIONs applied as tools for gene delivery, immunotherapy, and tissue engineering are also reviewed in the context of their potential to translational medicine. Lastly, some emerging issues concerning SPION toxicity are summarized and how they are being addressed to achieve success in clinical applications is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.0c00947DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
iron oxide
8
oxide nanoparticles
8
agents cancer
8
cancer treatment
8
treatment tissue
8
progress iron
4
nanoparticles therapeutic
4
magnetic
4
therapeutic magnetic
4

Similar Publications