A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

From Data to Deployment: The Collaborative Community on Ophthalmic Imaging Roadmap for Artificial Intelligence in Age-Related Macular Degeneration. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Health care systems worldwide are challenged to provide adequate care for the 200 million individuals with age-related macular degeneration (AMD). Artificial intelligence (AI) has the potential to make a significant, positive impact on the diagnosis and management of patients with AMD; however, the development of effective AI devices for clinical care faces numerous considerations and challenges, a fact evidenced by a current absence of Food and Drug Administration (FDA)-approved AI devices for AMD.

Purpose: To delineate the state of AI for AMD, including current data, standards, achievements, and challenges.

Methods: Members of the Collaborative Community on Ophthalmic Imaging Working Group for AI in AMD attended an inaugural meeting on September 7, 2020, to discuss the topic. Subsequently, they undertook a comprehensive review of the medical literature relevant to the topic. Members engaged in meetings and discussion through December 2021 to synthesize the information and arrive at a consensus.

Results: Existing infrastructure for robust AI development for AMD includes several large, labeled data sets of color fundus photography and OCT images; however, image data often do not contain the metadata necessary for the development of reliable, valid, and generalizable models. Data sharing for AMD model development is made difficult by restrictions on data privacy and security, although potential solutions are under investigation. Computing resources may be adequate for current applications, but knowledge of machine learning development may be scarce in many clinical ophthalmology settings. Despite these challenges, researchers have produced promising AI models for AMD for screening, diagnosis, prediction, and monitoring. Future goals include defining benchmarks to facilitate regulatory authorization and subsequent clinical setting generalization.

Conclusions: Delivering an FDA-authorized, AI-based device for clinical care in AMD involves numerous considerations, including the identification of an appropriate clinical application; acquisition and development of a large, high-quality data set; development of the AI architecture; training and validation of the model; and functional interactions between the model output and clinical end user. The research efforts undertaken to date represent starting points for the medical devices that eventually will benefit providers, health care systems, and patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859710PMC
http://dx.doi.org/10.1016/j.ophtha.2022.01.002DOI Listing

Publication Analysis

Top Keywords

collaborative community
8
community ophthalmic
8
ophthalmic imaging
8
artificial intelligence
8
age-related macular
8
macular degeneration
8
health care
8
care systems
8
amd
8
clinical care
8

Similar Publications