Guanosine boosts the fast, but not sustained, antidepressant-like and pro-synaptogenic effects of ketamine by stimulating mTORC1-driven signaling pathway.

Eur Neuropsychopharmacol

Neuroscience Graduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 SC, Brazil. Electronic address: ana

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mTORC1-dependent dendritic spines formation represents a key mechanism for fast and long-lasting antidepressant responses, but it remains to be determined whether this mechanism may account for the ability of guanosine in potentiating ketamine's actions. Here, we investigated the ability of ketamine plus guanosine to elicit fast and sustained antidepressant-like and pro-synaptogenic effects in mice and the role of mTORC1 signaling in these responses. The combined administration of subthreshold doses of ketamine (0.1 mg/kg, i.p.) and guanosine (0.01 mg/kg, p.o.) caused a fast (1 h - 24 h), but not long-lasting (7 days) reduction in the immobility time in the tail suspension test. This behavioral effect was paralleled by a rapid (started in 1 h) and transient (back to baseline in 24 h) increase on BDNF, p-Akt (Ser), p-GSK-3β (Ser), p-mTORC1 (Ser), p-p70S6K (Thr) immunocontent in the hippocampus, but not in the prefrontal cortex. Conversely, ketamine plus guanosine increased PSD-95 and GluA1 immunocontent in the prefrontal cortex, but not the hippocampus after 1 h, whereas increased levels of these proteins in both brain structures were observed after 24 h, but these effects did not persist after 7 days. The combined administration of ketamine plus guanosine raised the dendritic spines density in the ventral hippocampal DG and prefrontal cortex after 24 h Rapamycin (0.2 nmol/site, i.c.v.) abrogated the antidepressant-like effect and pro-synaptogenic responses triggered by ketamine plus guanosine. These results indicate that guanosine may boost the antidepressant-like effect of ketamine for up to 24 h by a mTORC1-dependent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2021.12.010DOI Listing

Publication Analysis

Top Keywords

ketamine guanosine
16
antidepressant-like pro-synaptogenic
12
prefrontal cortex
12
guanosine
8
fast sustained
8
sustained antidepressant-like
8
pro-synaptogenic effects
8
dendritic spines
8
combined administration
8
ketamine
7

Similar Publications

MK-8189 is a novel phosphodiesterase 10A (PDE10A) inhibitor being evaluated in clinical studies for the treatment of schizophrenia. PDE10A is a cyclic nucleotide phosphodiesterase enzyme highly expressed in medium spiny neurons of the striatum. MK-8189 exhibits subnanomolar potency on the PDE10A enzyme and has excellent pharmaceutical properties.

View Article and Find Full Text PDF

Background: Severe burns are devastating injuries with significant immune dysfunction and result in substantial mortality and morbidity due to sepsis induced organ failure. Acute lung injury is the most common type of organ injury in sepsis, however, the mechanisms of which are poorly understood and effective therapeutic measures are limited. This study is aimed to investigate the effect of a small Guanosine triphosphatase (GTPase), Adenosine diphosphate ribosylation factor 6 (ARF6), on burn sepsis induced lung injury, and discuss the possible mechanisms.

View Article and Find Full Text PDF

Guanosine has been reported to elicit antidepressant-like responses in rodents, but if these actions are associated with its ability to afford neuroprotection against glutamate-induced toxicity still needs to be fully understood. Therefore, this study investigated the antidepressant-like and neuroprotective effects elicited by guanosine in mice and evaluated the possible involvement of NMDA receptors, glutamine synthetase, and GLT-1 in these responses. We found that guanosine (0.

View Article and Find Full Text PDF

Phosphodiesterase 1B (PDE1B) and PDE10A are dual-specificity PDEs that hydrolyse both cyclic adenosine monophosphate and cyclic guanosine monophosphate, and are highly expressed in the striatum. Several reports have suggested that PDE10A inhibitors may present a promising approach for the treatment of positive symptoms of schizophrenia, whereas PDE1B inhibitors may present a novel mechanism to modulate cognitive deficits. Previously, we have reported a novel dual inhibitor of PDE1B and PDE10A, compound 2 [(3-fluorophenyl)(2-methyl-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)methanone] which has shown inhibitory activity for human recombinant PDE1B and PDE10A in vitro.

View Article and Find Full Text PDF

Guanosine as a promising target for fast-acting antidepressant responses.

Pharmacol Biochem Behav

July 2022

Neuroscience Postgraduate Program, Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil. Electronic address:

Although the rapid-onset and sustained antidepressant responses elicited by ketamine have gained considerable attention in recent years, it has some knock-on effects that limit its widespread clinical use. Therefore, ketamine is considered the prototype for the new generation of glutamate-based rapid-acting antidepressants. Within this context, it has been demonstrated that guanosine, an endogenous guanine-based purine, has overlapping mechanisms of action with ketamine and is effective in eliciting fast antidepressant-like responses and even potentiating ketamine's actions in preclinical studies.

View Article and Find Full Text PDF