Ultracompact Nanotheranostic PEG Platform for Cancer Applications.

ACS Appl Bio Mater

LSA Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

Published: October 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a new targetable nanoconstruct (NC) capable of simultaneously serving as a therapeutic platform for photodynamic therapy (PDT) as well as a magnetic resonance (MR) molecular imaging agent, free of heavy metal atoms. PDT has seen much interest with the introduction of NC-assisted cell-specific targeting of the photosensitizer (PS). The previously reported ultrasmall 8-arm polyethylene glycol amine (8PEGA) NC, with an attached chlorin e6 (Ce6) PS, yielded promising results for PDT of heart arrhythmia, and , on live rat and sheep hearts, respectively, when using targeting peptides for of cardio-myocytes. Here we explore the extension of this NC-based PDT to cancer. For this purpose, we switched the targeting peptide from CTP-cys to F3-cys. Notably, the 8PEGA-Ce6 NCs have a superior reactive oxygen species (ROS) production compared to traditional Ce6 encapsulated polyacrylamide (PAAm) NCs, which should be advantageous for PDT. This NC is also cyto-compatible and offers chemical flexibility for the attachment of a choice of targeting peptides. Finally, this label-free 8PEGA NC can be directly and selectively imaged by MRI, using standard spin-echo imaging sequences with large diffusion magnetic field gradients to suppress the water signal. Notably, due to its ultrasmall size this NC is also expected to have improved penetration and bioelimination, as was already shown in previous biodistribution studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.8b00315DOI Listing

Publication Analysis

Top Keywords

targeting peptides
8
pdt
5
ultracompact nanotheranostic
4
nanotheranostic peg
4
peg platform
4
platform cancer
4
cancer applications
4
applications targetable
4
targetable nanoconstruct
4
nanoconstruct capable
4

Similar Publications

Objectives: Complement factor I (CFI) deficiency is a rare condition that can present with fulminant relapsing CNS autoinflammation. In this report, we highlight the utility of genetic testing in unexplained CNS autoinflammation.

Methods: This case report describes a young adult with partial CFI deficiency, presenting with acute hemorrhagic leukoencephalitis and longitudinally extensive transverse myelitis.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.

View Article and Find Full Text PDF

Acute sleep deprivation (SD) rapidly alleviates depression, addressing a critical gap in mood disorder treatment. Rapid eye movement SD (REM SD) modulates the excitability of vasoactive intestinal peptide (VIP) neurons, influencing the synaptic plasticity of pyramidal neurons. However, the precise mechanism remains undefined.

View Article and Find Full Text PDF

(phosphatidylserine synthase 1) encodes an enzyme that facilitates production of phosphatidylserine (PS), which mediates a global immunosuppressive signal. Here, based on in vivo CRISPR screen, we identified PTDSS1 as a target to improve anti-PD-1 therapy. Depletion of in tumor cells increased expression of interferon-γ (IFN-γ)-regulated genes, including , , , and , even in the absence of IFN-γ stimulation in vitro.

View Article and Find Full Text PDF

IFN-β, a type I interferon, has been used as a first-line therapy for patients with multiple sclerosis (MS) for more than 30 years; however, the cellular and molecular basis of its therapeutic efficacy remains unclear. Here, we first used experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, to show that the therapeutic effects of IFN-β were associated with a down-regulation of microRNA-21 (miR-21) and pathogenic T17 (pT17) cells. In vitro experiments demonstrated that genetic knockout of miR-21 directly inhibited pathogenic T17 cell differentiation.

View Article and Find Full Text PDF