98%
921
2 minutes
20
The demand of glucose monitoring devices and even of updated guidelines for the management of diabetic patients is dramatically increasing due to the progressive rise in the prevalence of diabetes mellitus and the need to prevent its complications. Even though the introduction of the first glucose sensor occurred decades ago, important advances both from the technological and clinical point of view have contributed to a substantial improvement in quality healthcare. This review aims to bring together purely technological and clinical aspects of interest in the field of glucose devices by proposing a roadmap in glucose monitoring and management of patients with diabetes. Also, it prospects other biological fluids to be examined as further options in diabetes care, and suggests, throughout the technology innovation process, future directions to improve the follow-up, treatment, and clinical outcomes of patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692922 | PMC |
http://dx.doi.org/10.7150/thno.64035 | DOI Listing |
Mikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFAnaesthesiologie
September 2025
Klinik für Anästhesiologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
Sodium-glucose Cotransporter 2 (SGLT-2) inhibitors are oral antidiabetic drugs that were developed for the treatment of patients with diabetes mellitus and are now also approved for treating chronic heart failure and chronic kidney disease. By inhibiting SGLT‑2 in the proximal renal tubule, urinary excretion of glucose is increased. Large randomized trials have demonstrated improved glycemic control, reduced cardiovascular events and lower mortality but also an increased risk of urogenital infections and dehydration.
View Article and Find Full Text PDFDiabet Med
September 2025
Edinburgh Centre for Endocrinology & Diabetes, NHS Lothian, Edinburgh, UK.
Aims: This study aimed to assess the impact of the Omnipod 5 automated insulin delivery (AID) system on continuous glucose monitoring (CGM) metrics, HbA1c, and weight in a real-world setting. Additionally, independent predictors of glycaemic response were assessed.
Methods: Observational analysis of adults with type 1 diabetes using Omnipod 5 (n = 353).
Introduction: Genetic analysis is essential for diagnosing, treating, and predicting complications in neonatal diabetes mellitus (NDM) but is unavailable in some regions. Sulfonylureas are effective for NDM caused by KCNJ11 or ABCC8 mutations, which are among the most common genetic causes, therefore they are often given before genetic testing. Unfortunately, in certain ethnicities, this mutation rarely occurs.
View Article and Find Full Text PDFDiabetologia
September 2025
Centre Universitaire de Diabétologie et de ses Complications, AP-HP, Hôpital Lariboisière, Paris, France.
Aims/hypothesis: Severe hypoglycaemia events (SHE) remain frequent in people with type 1 diabetes despite advanced diabetes technologies. We examined whether time below range (TBR) 3.9 mmol/l (70 mg/dl; TBR70) or 3.
View Article and Find Full Text PDF