A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Interplay of Electrostatics and Chemical Positioning in the Evolution of Antibiotic Resistance in TEM β-Lactamases. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interplay of enzyme active site electrostatics and chemical positioning is important for understanding the origin(s) of enzyme catalysis and the design of novel catalysts. We reconstruct the evolutionary trajectory of TEM-1 β-lactamase to TEM-52 toward extended-spectrum activity to better understand the emergence of antibiotic resistance and to provide insights into the structure-function paradigm and noncovalent interactions involved in catalysis. Utilizing a detailed kinetic analysis and the vibrational Stark effect, we quantify the changes in rates and electric fields in the Michaelis and acyl-enzyme complexes for penicillin G and cefotaxime to ascertain the evolutionary role of electric fields to modulate function. These data are combined with MD simulations to interpret and quantify the substrate-dependent structural changes during evolution. We observe that this evolutionary trajectory utilizes a large preorganized electric field and substrate-dependent chemical positioning to facilitate catalysis. This governs the evolvability, substrate promiscuity, and protein fitness landscape in TEM β-lactamase antibiotic resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704030PMC
http://dx.doi.org/10.1021/acscentsci.1c00880DOI Listing

Publication Analysis

Top Keywords

chemical positioning
12
antibiotic resistance
12
electrostatics chemical
8
evolutionary trajectory
8
electric fields
8
interplay electrostatics
4
positioning evolution
4
evolution antibiotic
4
resistance tem
4
tem β-lactamases
4

Similar Publications