A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Phytochemical rich Himalayan petals inhibit SARS-CoV-2 infection . | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phytochemicals with potential to competitively bind to the host receptors or inhibit SARS-CoV-2 replication, may prove to be useful as adjunct therapeutics for COVID-19. We profiled and investigated the phytochemicals of petals sourced from Himalayan flora, undertook studies and found it as a promising candidate against SARS-CoV-2. The phytochemicals were reported in various scientific investigations to act against a range of virus and which prompted us to test against SARS-CoV-2. assays of petals hot aqueous extract confirmed dose dependent reduction in SARS-CoV-2 viral load in infected Vero E6 cells (80% inhibition at 1 mg/ml; IC50 = 173 µg/ml) and phytochemicals profiled were subjected to molecular docking studies against SARS CoV-2 target proteins. The molecules 5-O-Feruloyl-quinic acid, 3-Caffeoyl-quinic acid, 5-O-Coumaroyl-D-quinic acid, Epicatechin and Catechin showed promising binding affinity with SARS-CoV-2 Main protease (M; PDB ID: 6LU7; responsible for viral replication) and Human Angiotensin Converting Enzyme-2 (ACE2; PDB ID: 1R4L; mediate viral entry in the host). Molecular dynamics (MD) simulation of 5-O-Feruloyl-quinic acid, an abundant molecule in the extract complexed with the target proteins showed stable interactions. Taken together, the phytochemical profiling, analysis and anti-viral assay revealed that the petals extract act upon M and may be inhibiting SARS-CoV-2 replication. This is the first report highlighting petals as a reservoir of antiviral phytochemicals with potential anti-SARS-CoV-2 activity using an system.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.2021287DOI Listing

Publication Analysis

Top Keywords

inhibit sars-cov-2
8
phytochemicals potential
8
sars-cov-2 replication
8
target proteins
8
5-o-feruloyl-quinic acid
8
sars-cov-2
7
petals
5
phytochemicals
5
phytochemical rich
4
rich himalayan
4

Similar Publications