A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fast writer adaptation with style extractor network for handwritten text recognition. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Writing style is an abstract attribute in handwritten text. It plays an important role in recognition systems and is not easy to define explicitly. Considering the effect of writing style, a writer adaptation method is proposed to transform a writer-independent recognizer toward a particular writer. This transformation has the potential to significantly increase accuracy. In this paper, under the deep learning framework, we propose a general fast writer adaptation solution. Specifically, without depending on other complex skills, a well designed style extractor network (SEN) trained by identification loss (IDL) is introduced to explicitly extract personalized writer information. The architecture of SEN consists of a stack of convolutional layers followed by a recurrent neural network with gated recurrent units to remove semantic context and retain writer information. Then, the outputs of the GRU are further integrated into a one-dimensional vector that is adopted to represent writing style. Finally, the extracted style information is fed into the writer-independent recognizer to achieve adaptation. Validated on offline handwritten text recognition tasks, the proposed fast sentence-level adaptation achieves remarkable improvements in Chinese and English text recognition tasks. Specifically, in the HETR task, a multi-information fusion network that is equipped with a hybrid attention mechanism and that integrates visual features, context features and writing style is proposed. In addition, under the same condition (only one writer-specific text line used as adaptation data), the proposed solution, without consuming extra time, can significantly outperform the previous multiple-pass decoding method. The code is available at https://github.com/Wukong90/Handwritten-Text-Recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2021.12.002DOI Listing

Publication Analysis

Top Keywords

writing style
16
writer adaptation
12
handwritten text
12
text recognition
12
fast writer
8
style extractor
8
extractor network
8
writer-independent recognizer
8
recognition tasks
8
style
7

Similar Publications