98%
921
2 minutes
20
Polymyxin B (PMB) is clinically used as a last-line therapy against life-threatening Gram-negative "superbugs". However, thorough understanding of the membrane actions of PMB at a molecular level is still lacking. In this work, a variety of bacterial membrane mimics with varying lipid compositions were built, and their interactions with PMB were systematically investigated using coarse-grained molecular dynamics simulation. PMB demonstrated characteristic preference to specific lipid species during its interaction with different membrane systems, such as the rough mutant lipipolysacchrides (Re LPS) preference in an outer membrane (OM) or the cardiolipin and POPG affinity in an inner membrane (IM). As a result of the lipid-specific actions, complicated membrane interaction states of PMB were observed, including adsorption on the OM surface. In contrast, for the IM or a mutative OM containing "impurity lipids" like POPE, POPG or lipid A, it could insert into the membrane via its acyl chain. Such actions of PMB influence the structure and lipid mobility of the membrane. In particular, the OM-bound PMB breaks the synchronous movement of Re LPS molecules in the outer leaflet and makes them diffuse more randomly, while its insertion into IM blocks the phospholipid diffusion and makes the membrane more homogeneous in the trajectory space. Our results provide insight into the action mechanism of PMB at a membrane level and a foundation for developing novel and safer polymyxin strategies for better clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2021.112288 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFInt J Nurs Knowl
September 2025
Luciano Feijão College, Sobral, Ceará, Brazil.
Purpose: To clinically validate the nursing diagnosis "Inadequate Nutritional Intake" based on elements identified within a specific situation theory framework in the context of children with cancer.
Methods: This is a diagnostic accuracy study following the Standards for Reporting Diagnostic Accuracy Studies (STARD) protocol. Specifically, it refers to the clinical validation phase of the nursing diagnosis Inadequate nutritional intake, using a cross-sectional design.
EMBO J
September 2025
Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece.
In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.
View Article and Find Full Text PDFBiotechnol Lett
September 2025
Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.
The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.
View Article and Find Full Text PDFNat Chem Biol
September 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.
View Article and Find Full Text PDF