98%
921
2 minutes
20
Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2 motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2S reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2 motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804933 | PMC |
http://dx.doi.org/10.15252/embj.2021108823 | DOI Listing |
Nano Today
December 2025
Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA.
Nanomaterials often need to interact with proteins on the plasma membrane to get cross and access their intracellular targets. Therefore, to fully understand the cell entry mechanism, it is of vital importance to gain a comprehensive insight into the proteome at the interface when nanomaterials encounter the cells. Here, we reported a peroxidase-based proximity labeling method to survey the proteome at the nanoparticle (NP)-cell interface.
View Article and Find Full Text PDFACS Omega
September 2025
Molecule and Materials Modeling Laboratory, and Department of Chemistry, Can Tho University, Can Tho 94000 Viet Nam.
Computational approaches within the framework of density functional theory (DFT) are used to probe the effects of gold nanoparticles (AuNPs) on the antioxidant potency of gallic acid (HGA), which is a prototypical polyphenolic acid. Four small gold clusters, Au with = 2, 3, 6, and 11, are employed as simple models to simulate the surface of AuNPs. The antioxidant capacity is evaluated through the ability to donate a hydrogen atom and to transfer an electron, which are characterized by the bond dissociation enthalpy (BDE) and ionization energy (IE) of the antioxidant, respectively.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2025
Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA.
We combined circular dichroism (CD) and viscosity measurements with molecular dynamics (MD) simulations and classification and regression approaches to machine learning to characterize solution structures of 22-mer, 25-mer, and 30-mer peptide- (-GlyArg6) conjugated phosphorodiamidate morpholino oligonucleotides (PPMOs). PPMO molecules form non-canonical folded structures with 1.4- to 1.
View Article and Find Full Text PDFImmune Netw
August 2025
Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Rheumatoid arthritis (RA) is an autoimmune disease. We examined gene expression of five granzymes (GZMs), perforin (PRF-1), and serglycin (SRGN) from tissues derived from pathobiology of early arthritis cohort (PEAC) and phase 4 randomized controlled trial in anti-TNF inadequate responder patients with RA (R4RA). Information regarding gene expression of , , and in synovium and blood pathotypes and their correlations with disease activity scores with 28 joints (DAS28)-erythrocyte sedimentation rate and with DAS28-C-reactive protein in early RA (eRA) is lacking.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Electrical & Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea.
Purpose: This study investigates the antibacterial and anticancer activity of previously reported iron oxide (FeO)-based nanoparticles (NPs) conjugated with chlorin e6 and folic acid (FCF) in photodynamic therapy (PDT) using a human bladder cancer (BC) (T-24) cell line and three bacterial strains.
Method: To investigate the potential applicability of the synthesized NPs as therapeutic agents for image-based photodynamic BC therapy, their photodynamic anticancer activity was analyzed and the mechanisms of cell death in T-24 cells treated with these NPs were assessed qualitatively and quantitatively through atomic absorption spectroscopy, fluorescence imaging, and transmission electron microscopy.
Results: The effective localization of FCF NPs in T-24 cells were confirmed, validating their excellent cellular fluorescence and magnetic resonance imaging capabilities.