Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To investigate the correlation of volumetric measurements of intraretinal (IRF) and subretinal fluid obtained by deep learning and central retinal subfield thickness (CSFT) based on optical coherence tomography in retinal vein occlusion, diabetic macular edema, and neovascular age-related macular degeneration.

Methods: A previously validated deep learning-based approach was used for automated segmentation of IRF and subretinal fluid in spectral domain optical coherence tomography images. Optical coherence tomography volumes of 2.433 patients obtained from multicenter studies were analyzed. Fluid volumes were measured at baseline and under antivascular endothelial growth factor therapy in the central 1, 3, and 6 mm.

Results: Patients with neovascular age-related macular degeneration generally demonstrated the weakest association between CSFT and fluid volume measurements in the central 1 mm (0.107-0.569). In patients with diabetic macular edema, IRF correlated moderately with CSFT (0.668-0.797). In patients with retinal vein occlusion, IRF volumes showed a moderate correlation with CSFT (0.603-0.704).

Conclusion: The correlation of CSFT and fluid volumes depends on the underlying pathology. Although the amount of central IRF seems to partly drive CSFT in diabetic macular edema and retinal vein occlusion, it has only a limited impact on patients with neovascular age-related macular degeneration. Our findings do not support the use of CSFT as a primary or secondary outcome measure for the quantification of exudative activity or treatment guidance.

Download full-text PDF

Source
http://dx.doi.org/10.1097/IAE.0000000000003385DOI Listing

Publication Analysis

Top Keywords

fluid volumes
12
optical coherence
12
coherence tomography
12
retinal vein
12
vein occlusion
12
diabetic macular
12
macular edema
12
neovascular age-related
12
age-related macular
12
subfield thickness
8

Similar Publications

Parasagittal dural space and arachnoid granulations morphology in pre-clinical and early clinical multiple sclerosis.

Mult Scler

September 2025

Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA.

Background: There is limited knowledge on the post-glymphatic structures such as the parasagittal dural (PSD) space and the arachnoid granulations (AGs) in multiple sclerosis (MS).

Objectives: To evaluate differences in volume and macromolecular content of PSD and AG between people with newly diagnosed MS (pwMS), clinically isolated syndrome (pwCIS), or radiologically isolated syndrome (pwRIS) and healthy controls (HCs) and their associations with clinical and radiological disease measures.

Methods: A total of 69 pwMS, pwCIS, pwRIS, and HCs underwent a 3.

View Article and Find Full Text PDF

Microgravity experiments on board the International Space Station, combined with particle-resolved direct numerical simulations, were conducted to investigate the long-term flocculation behavior of clay suspensions in saline water in the absence of gravity. After an initial homogenization of the suspensions, different clay compositions were continuously monitored for 99 days, allowing a detailed analysis of aggregate growth through image processing. The results indicate that the onboard oscillations (g-jitter) may have accelerated the aggregation process.

View Article and Find Full Text PDF

Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.

View Article and Find Full Text PDF

A numerical investigation of the kinematic and fluid dynamic behaviour of an intramuscular autoinjector designed for optimising injection efficiency.

Med Eng Phys

October 2025

Department of Mechanical Engineering, University of Cape Town, 7701, South Africa; Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, 7701, South Africa.

The usability and versatility of autoinjectors in managing chronic and autoimmune diseases have made them increasingly attractive in medicine. However, investigations into autoinjector designs require an understanding of the kinematic properties and fluid behaviour during injection. To optimise injection efficiency, this study develops a mathematical and computational fluid dynamics (CFD) model of an IM autoinjector by investigating the effects of viscosity, needle length, needle diameter, and medication volume on the injection process.

View Article and Find Full Text PDF

Traditionally, clinical devices are designed, tested and improved through lengthy and expensive laboratory experiments and clinical trials [1]. More recently, computational methods have allowed for rapid testing, speeding up the design process and enabling far more complete searches of design space. While computational models cannot fully capture the complexities of biological systems, they provide valuable insights into crucial underlying mechanisms, such as the effects of fluid-structure interactions (FSIs).

View Article and Find Full Text PDF