Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Photocatalytic CO reduction into formate (HCOO) has been widely studied with semiconductor and molecule-based systems, but it is rarely investigated with covalent organic frameworks (COFs). Herein, we report a novel donor-acceptor COF named composed of isoindigo and metallated porphyrin subunits that exhibits high catalytic efficiency (∼50 μmol formate g h) at low-power visible-light irradiation and in the absence of rare metal cocatalysts. Density functional theory calculations and experimental diffuse-reflectance measurements are used to explain the origin of catalytic efficiency and the particularly low band gap (0.56 eV) in this material. The mechanism of photocatalysis is also studied experimentally and is found to involve electron transfer from the sacrificial agent to the excited . The observed high-efficiency conversion could be ascribed to the enhanced CO adsorption on the coordinatively unsaturated cobalt centers, the narrow band gap, and the efficient transfer of the charge originating from the postsynthetic metallation. It is anticipated that this study will pave the way toward the design of new simple and efficient catalysts for photocatalytic CO reduction into useful products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c20729 | DOI Listing |