98%
921
2 minutes
20
Triggering receptor expressed on myeloid cell 2 (TREM2) is linked to risk of neurodegenerative disease. However, the function of TREM2 in neurodegeneration is still not fully understood. Here, we investigated the role of microglial TREM2 in TAR DNA-binding protein 43 (TDP-43)-related neurodegeneration using virus-mediated and transgenic mouse models. We found that TREM2 deficiency impaired phagocytic clearance of pathological TDP-43 by microglia and enhanced neuronal damage and motor impairments. Mass cytometry analysis revealed that human TDP-43 (hTDP-43) induced a TREM2-dependent subpopulation of microglia with high CD11c expression and phagocytic ability. Using mass spectrometry (MS) and surface plasmon resonance (SPR) analysis, we further demonstrated an interaction between TDP-43 and TREM2 in vitro and in vivo as well as in human tissues from individuals with amyotrophic lateral sclerosis (ALS). We computationally identified regions within hTDP-43 that interact with TREM2. Our data highlight that TDP-43 is a possible ligand for microglial TREM2 and that this interaction mediates neuroprotection of microglia in TDP-43-related neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741737 | PMC |
http://dx.doi.org/10.1038/s41593-021-00975-6 | DOI Listing |
J Neurosci
September 2025
Center for Neurodegenerative Disease Research, Dept. Pathology, Perelman School of Medicine at the University of Pennsylvania, 3 Maloney Bldg, 3600 Spruce St, Philadelphia, PA 19140, USA.
Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence indicates that TDP-43 pathology induces neuronal hyperexcitability, which may contribute to excitotoxic neuronal death. To characterize TDP-43 mediated network excitability changes in a disease-relevant model, we performed in vivo continuous electroencephalography monitoring and ex vivo acute hippocampal slice electrophysiology in rNLS8 mice (males and females), which express human TDP-43 with a defective nuclear localization signal (hTDP-43ΔNLS).
View Article and Find Full Text PDFNat Commun
August 2025
Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Nuclear loss and cytoplasmic buildup of the RNA-binding protein TDP-43 is a hallmark of ALS and related disorders. While studies using artificial TDP-43 depletion in neurons have revealed changes in gene expression and splicing, their relevance to actual patients remained unclear. Induced pluripotent stem cell (iPSC)-derived neurons (iPSNs) from 180 individuals, including controls, C9orf72 ALS/FTD, and sporadic ALS (sALS) patients were used to generate and analyze ~32,500 qRT-PCR data points across 20 genes which identified variable, time-dependent signatures of TDP-43 loss of function in individual lines.
View Article and Find Full Text PDFMol Psychiatry
July 2025
Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
Cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases. However, the underlying mechanisms driving TDP-43 pathological aggregation remain elusive. In this study, we revealed that TNF receptor-associated factor 6 (TRAF6) promotes TDP-43 condensation, and disrupting TRAF6-TDP-43 interactions effectively suppresses its aggregation.
View Article and Find Full Text PDFViruses
May 2025
Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
The coronavirus disease 2019 (COVID-19) pandemic has been linked to long-term neurological effects with multifaceted complications of neurodegenerative diseases. Several studies have found that pathological changes in transactive response DNA-binding protein of 43 kDa (TDP-43) are involved in these cases. This review explores the causal interactions between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and TDP-43 from multiple perspectives.
View Article and Find Full Text PDFMol Neurodegener
April 2025
Unit of Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Background: In recent years, the seed amplification assay (SAA) has enabled the identification of pathological TDP-43 in the cerebrospinal fluid (CSF) and olfactory mucosa (OM) of patients with genetic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we investigated the seeding activity of TDP-43 in OM samples collected from patients with sporadic ALS.
Methods: OM samples were collected from patients with (a) sporadic motor neuron diseases (MND), including spinal ALS (n = 35), bulbar ALS (n = 18), primary lateral sclerosis (n = 10), and facial onset sensory and motor neuronopathy (n = 2); (b) genetic MND, including carriers of C9orf72 (n = 6), TARDBP (n = 4), SQSTM1 (n = 3), C9orf72 + SQSTM1 (n = 1), OPTN (n = 1), GLE1 (n = 1), FUS (n = 1) and SOD1 (n = 4) mutations; (c) other neurodegenerative disorders (OND), including Alzheimer's disease (n = 3), dementia with Lewy bodies (n = 8) and multiple system atrophy (n = 6); and (d) control subjects (n = 22).