Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The risk of coronary heart disease (CHD) clinical manifestations and patient management is estimated according to risk scores accounting multifactorial risk factors, thus failing to cover the individual cardiovascular risk. Technological improvements in the field of medical imaging, in particular, in cardiac computed tomography angiography and cardiac magnetic resonance protocols, laid the development of radiogenomics. Radiogenomics aims to integrate a huge number of imaging features and molecular profiles to identify optimal radiomic/biomarker signatures. In addition, supervised and unsupervised artificial intelligence algorithms have the potential to combine different layers of data (imaging parameters and features, clinical variables and biomarkers) and elaborate complex and specific CHD risk models allowing more accurate diagnosis and reliable prognosis prediction. Literature from the past 5 years was systematically collected from PubMed and Scopus databases, and 60 studies were selected. We speculated the applicability of radiogenomics and artificial intelligence through the application of machine learning algorithms to identify CHD and characterize atherosclerotic lesions and myocardial abnormalities. Radiomic features extracted by cardiac computed tomography angiography and cardiac magnetic resonance showed good diagnostic accuracy for the identification of coronary plaques and myocardium structure; on the other hand, few studies exploited radiogenomics integration, thus suggesting further research efforts in this field. Cardiac computed tomography angiography resulted the most used noninvasive imaging modality for artificial intelligence applications. Several studies provided high performance for CHD diagnosis, classification, and prognostic assessment even though several efforts are still needed to validate and standardize algorithms for CHD patient routine according to good medical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCIMAGING.121.013025DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
cardiac computed
16
computed tomography
16
tomography angiography
16
angiography cardiac
12
cardiac magnetic
12
magnetic resonance
12
radiogenomics artificial
8
coronary heart
8
heart disease
8

Similar Publications

Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.

Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.

Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.

View Article and Find Full Text PDF

In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.

View Article and Find Full Text PDF

The incorporation of AI-supported language models into the healthcare sector holds significant potential to revolutionize nursing education, research, and clinical practice. Within this framework, ChatGPT has emerged as a valuable tool for personalizing educational materials, enhancing academic productivity, expediting clinical decision-making processes, and optimizing research efficiency. In the realm of nursing education, ChatGPT offers numerous advantages, including the preparation of course content, facilitation of student assessments, and the development of simulation-based learning environments.

View Article and Find Full Text PDF

Robotic surgery has transformed the field of surgery, offering enhanced precision, minimal invasiveness, and improved patient outcomes. This narrative review explores the multifaceted aspects of robotic surgery, examining the challenges, recent advances, and future prospects for its integration into healthcare. Our comprehensive analysis of 48 studies reveals significant geographic disparities in robotic surgery research and implementation, with 68.

View Article and Find Full Text PDF