A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Quantitative sodium magnetic resonance imaging in food: Addressing sensitivity issues using single quantum chemical shift imaging at high field. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

According to various health organizations, the global consumption of salt is higher than recommended and needs to be reduced. Ideally, this would be achieved without losing the taste of the salt itself. In order to accomplish this goal, both at the industrial and domestic levels, we need to understand the mechanisms that govern the final distribution of salt in food. The in-silico solutions in use today greatly over-simplify the real food structure. Measuring the quantity of sodium at the local level is key to understanding sodium distribution. Sodium magnetic resonance imaging (MRI), a non-destructive approach, is the ideal choice for salt mapping along transformational process. However, the low sensitivity of the sodium nucleus and its short relaxation times make this imaging difficult. In this paper, we show how sodium MRI can be used to highlight salt heterogeneities in food products, provided that the temporal decay is modeled, thus correcting for differences in relaxation speeds. We then propose an abacus which shows the relationship between the signal-to-noise ratio of the sodium MRI, the salt concentration, the B0 field, and the spatial and temporal resolutions. This abacus simplifies making the right choices when implementing sodium MRI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrc.5239DOI Listing

Publication Analysis

Top Keywords

sodium mri
12
sodium magnetic
8
magnetic resonance
8
resonance imaging
8
sodium
7
salt
6
quantitative sodium
4
imaging
4
food
4
imaging food
4

Similar Publications