Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Metabolic connectivity is conventionally calculated in terms of correlation of static positron emission tomography (PET) measurements across subjects. There is increasing interest in deriving metabolic connectivity at the single-subject level from dynamic PET data, in a similar way to functional magnetic resonance imaging. However, the strong multicollinearity among region-wise PET time-activity curves (TACs), their non-Gaussian distribution, and the choice of the best strategy for TAC standardization before metabolic connectivity estimation, are non-trivial methodological issues to be tackled.In this work we test four different approaches to estimate sparse inverse covariance matrices, as well as three similarity-based methods to derive adjacency matrices. These approaches, combined with three different TAC standardization strategies, are employed to quantify metabolic connectivity from dynamic [F]fluorodeoxyglucose ([F]FDG) PET data in four healthy subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9630441 | DOI Listing |