A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

LIFGO: A modular laser-induced fluorescence detection system based on plug-in blocks. | LitMetric

LIFGO: A modular laser-induced fluorescence detection system based on plug-in blocks.

Talanta

Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; Hangzhou Innovation Center, Zhejiang University, Hangzhou, 311200, China; Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China; College

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, a laser-induced fluorescence (LIF) detection system built in a modular assembling mode was developed based on commercial LEGO blocks and 3D printed blocks. We designed and fabricated a variety of 3D printed building blocks fixed with optical components, including laser light source, filters, lens, dichroic mirror, photodiode detector, and control circuits. Utilizing the relatively high positioning precision of the plug-in blocks, a modular construction strategy was adopted using the flexible plug-in combination of the blocks to build a highly sensitive laser-induced fluorescence detection system, LIFGO. The LIFGO system has a simple structure which could be constructed by inexperienced users within 3 h. We optimized the structure and tested the performance of the LIFGO system, and its detection limits for sodium fluorescein solution in 100 μm i.d. and 250 μm i.d. capillaries were 7 nM and 0.9 nM, respectively. Based on the LIFGO system, we also built a simple capillary electrophoresis (CE) system and applied it to the analysis of DNA fragments to demonstrate its application possibility in biochemical analysis. The separation of 7 fragments in DL500 DNA markers were completed in 600 s. Because of the features of low cost (less than $100) and easy-to-build construction, we introduced the LIFGO system to the experimental teaching of instrumental analysis for undergraduate students. The modular construction form of the LIF detection system greatly reduces the threshold of instrument construction, which is conducive to the popularization of the LIF detection technique in routine laboratories as well as the reform of experimental teaching mode.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.123063DOI Listing

Publication Analysis

Top Keywords

detection system
16
lifgo system
16
laser-induced fluorescence
12
lif detection
12
system
9
fluorescence detection
8
plug-in blocks
8
system built
8
modular construction
8
experimental teaching
8

Similar Publications