98%
921
2 minutes
20
Mycotoxins represent a major concern for human and animal health because of their harmful effects and high occurrence in food and feed. Rapid immunoanalytical methods greatly contribute to strengthening the safety of our food supply by efficiently monitoring chemical contaminants, so high-affinity and specific antibodies have been generated for almost all internationally regulated mycotoxins. The only exception is patulin, a mycotoxin mainly produced by Penicillium expansum for which such a target has not yet been achieved. Accordingly, no point-of-need tests commonly used in food immunodiagnostics are commercially available for patulin. In the present study, three functionalized derivatives conforming to generally accepted rules in hapten design were firstly tested to generate suitable antibodies for the sensitive immunodetection of patulin. However, these conventional bioconjugates were unable to elicit the desired immune response, so an alternative strategy that takes advantage of the high electrophilic reactivity of patulin was explored. Patulin was reacted with 4-bromothiophenol, and the obtained adduct was used to produce antibodies with nanomolar affinity values. These results demonstrated for the first time that targeting the adduct resulting from the reaction of patulin with a thiol-containing compound is a promising approach for developing user-friendly immunoanalytical techniques for this elusive mycotoxin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648828 | PMC |
http://dx.doi.org/10.1038/s41598-021-02916-6 | DOI Listing |
Arthritis Rheumatol
September 2025
Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305.
J Neurochem
September 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.
View Article and Find Full Text PDFMol Ther
September 2025
Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
The reduction of TCF-1 during CD8 T cell exhaustion leads to attenuated antitumor activity and diminished responsiveness to immune checkpoint inhibitors. However, how TCF-1 is downregulated remains unclear. Here, we showed that during CD8 T cell exhaustion, lnc-SUMF2-8, induced by transcription factor TOX, can bind to cytosolic TCF-1, and direct it to the lysosome for degradation.
View Article and Find Full Text PDFMol Ther
September 2025
Department of Medicine, UMass Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA, USA; Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, UMass Chan Medic
The interleukin (IL)-1 pathway is a key mediator of inflammation and innate immune responses. Its dysregulation contributes to rheumatoid arthritis (RA) and autoinflammatory diseases (AIDs). In this study, we develop a recombinant adeno-associated virus (rAAV)-based gene therapy to deliver an inflammation-inducible, secreted human IL-1 receptor antagonist (sIL-1Ra) as a complementary approach to existing IL-1 blockers.
View Article and Find Full Text PDF