98%
921
2 minutes
20
Hepatocellular carcinoma (HCC) cells exhibit the stemness property, which makes the patient with HCC prone to tumor recurrence and metastasis. Despite the prominent regulatory role of long non-coding RNAs (lncRNAs) in tumor stemness, the roles and molecular mechanisms of LINC00106 in HCC are poorly understood. LINC00106, let7f and periostin expression levels in tissue specimens and cell lines were assessed through qRT-PCR and immunohistochemistry (IHC). Various and assays, namely sphere/colony formation, proportion of side population cells (SP%), invasion, migration, western blot, and murine xenograft model were employed for assessing the stemness and metastatic properties of HCC cells. Luciferase reporter assays, RNA-seq, RNA pull-down, RNA immunoprecipitation (RIP) were conducted to clarificate the target gene and analyze the underlying mechanisms. LINC00106 was prominently upregulated in tissues and cell lines of HCC. Patients having a high LINC00106 level exhibited a poor outcome. Under and conditions, the stemness and metastatic properties of HCC cells were augmented by LINC00106. Additionally, LINC00106 was found to sponge let7f to upregulate periostin, which lead to the activation of periostin-associated PI3K-AKT signaling pathway. Moreover, mA methylation was found to cause LINC00106 upregulation while maintaining LINC00106 RNA transcript stability. mA methylation triggers the upregulation of LINC00106, which promotes the stemness and metastasis properties in HCC cells by sponging let7f, thereby resulting in periostin activation. The findings indicate the potential of LINC00106 as a diagnostic marker and therapeutic target for HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632228 | PMC |
http://dx.doi.org/10.3389/fcell.2021.781867 | DOI Listing |
Adv Sci (Weinh)
September 2025
China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea
TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.
View Article and Find Full Text PDFNAR Cancer
September 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
Noncoding RNAs play pivotal roles in tumorigenesis and cancer progression. Recent evidence has identified vault RNAs (vtRNAs) as critical regulators of cellular homeostasis. The human genome encodes four vtRNA paralogs, which are differentially expressed in cancer tissues and contribute to tumor development.
View Article and Find Full Text PDFOncol Res
September 2025
Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, largely driven by an immunosuppressive tumor microenvironment (TME) that facilitates tumor growth, immune escape, and resistance to therapy. Although immunotherapy-particularly immune checkpoint inhibitors (ICIs)-has transformed the therapeutic landscape by restoring T cell-mediated anti-tumor responses, their clinical benefit as monotherapy remains suboptimal. This limitation is primarily attributed to immunosuppressive components within the TME, including tumor-associated macrophages, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs).
View Article and Find Full Text PDFOpen Med (Wars)
August 2025
Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan 2nd Road, Baise, Guangxi, 533000, China.
Objective: Peptide-encoding roles of lncRNAs are emerging in cancer biology. This study explores the function of the CCAT1-70aa peptide in hepatocellular carcinoma (HCC) and its underlying mechanisms.
Methods: Immunohistochemistry was used to detect CCAT1-70aa expression in HCC and adjacent tissues.
Front Immunol
September 2025
Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China.
Background: Cisplatin (DDP) is a clinical first-line chemotherapy drug for hepatocellular carcinoma (HCC), but treatment is often ineffective due to drug resistance. Yes-associated protein 1 (YAP1) is a critical regulator/factor in HCC tumor progression. Our previous research showed that DDP promoted the expression of YAP1 in mice bearing H22 cell in situ liver tumors, which might be related to the poor therapeutic effect of DDP.
View Article and Find Full Text PDF