Genistein regulates adipogenesis by blocking the function of adenine nucleotide translocase-2 in the mitochondria.

Biosci Biotechnol Biochem

Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan.

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genistein exerts antiadipogenic effects, but its target molecules remain unclear. Here, we delineated the molecular mechanism underlying the antiadipogenic effect of genistein. A pulldown assay using genistein-immobilized beads identified adenine nucleotide translocase-2 as a genistein-binding protein in adipocytes. Adenine nucleotide translocase-2 exchanges ADP/ATP through the mitochondrial inner membrane. Similar to the knockdown of adenine nucleotide translocase-2, genistein treatment decreased ADP uptake into the mitochondria and ATP synthesis. Genistein treatment and adenine nucleotide translocase-2 knockdown suppressed adipogenesis and increased phosphorylation of AMP-activated protein kinase. Adenine nucleotide translocase-2 knockdown reduced the transcriptional activity of CCAAT/enhancer-binding protein β, whereas AMP-activated protein kinase inhibition restored the suppression of adipogenesis by adenine nucleotide translocase-2 knockdown. These results indicate that genistein interacts directly with adenine nucleotide translocase-2 to suppress its function. The downregulation of adenine nucleotide translocase-2 reduces the transcriptional activity of CCAAT/enhancer-binding protein β via activation of AMP-activated protein kinase, which consequently represses adipogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbab203DOI Listing

Publication Analysis

Top Keywords

adenine nucleotide
36
nucleotide translocase-2
36
translocase-2 knockdown
12
amp-activated protein
12
protein kinase
12
adenine
9
nucleotide
9
translocase-2
9
genistein treatment
8
transcriptional activity
8

Similar Publications

SIRT2 and NAD Boosting Broadly Suppress Aging-Associated Inflammation.

Aging Cell

September 2025

Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA.

Aging leads to chronic inflammation that is linked to aging-associated conditions and diseases. Multiple immune pathways become activated during aging, posing a challenge to effectively reduce aging-associated inflammation. SIRT2, an NAD-dependent deacetylase, suppresses several immune pathways that become activated during aging and may represent an attractive target to broadly dampen aging-associated inflammation.

View Article and Find Full Text PDF

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF

Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.

View Article and Find Full Text PDF