A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

miR-3188 Enhances Sensitivity of Breast Cancer Cells to Ionizing Radiation by Down-regulating Rictor. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/aim: Rictor is an adaptor protein essential for mTORC2, which regulates cell growth and survival. The aim of this study was to identify microRNAs (miR) that down-regulate Rictor and investigate their function on breast cancer cell survival.

Materials And Methods: Trypan blue assay, MTT assay, polymerase chain reaction analysis, luciferase reporter assay and western blot analysis were carried out in breast cancer cell lines HCC1954, MDA-MB-231, SK-BR-3, and BT474.

Results: miR-3188 overexpression suppressed the expression of Rictor and inhibited cell viability in HCC1954 and MDA-MB-231, highly Rictor-expressing breast cancer cells. In addition, miR-3188 overexpression decreased the protein level of p-AKT at Ser473, a substrate of mTORC2. Moreover, miRNA-3188 overexpression sensitized breast cancer cells to ionizing radiation (IR) by down-regulating Rictor and p-AKT.

Conclusion: miR-3188 enhances IR sensitivity by affecting the mTORC2/AKT signalling pathway by altering the expression of Rictor, which could be a promising therapeutic strategy for the future treatment of breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.15436DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cancer cells
12
mir-3188 enhances
8
enhances sensitivity
8
cells ionizing
8
ionizing radiation
8
radiation down-regulating
8
down-regulating rictor
8
cancer cell
8
hcc1954 mda-mb-231
8

Similar Publications