Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Accurate and timely prognostication of patients with out-of-hospital cardiac arrest (OHCA) who achieved the return of spontaneous circulation (ROSC) is crucial in clinical decision-making, resource allocation, and communications with next-of-kins. We aimed to develop the Survival After ROSC in Cardiac Arrest (SARICA), a practical clinical decision tool to predict survival in OHCA patients who attained ROSC.
Methods: We utilized real-world Singapore data from the population-based Pan-Asian Resuscitation Outcomes Study between 2010-2018. We excluded patients without ROSC. The dataset was segmented into training (60%), validation (20%) and testing (20%) cohorts. The primary endpoint was survival (to 30-days or hospital discharge). AutoScore, an interpretable machine-learning based clinical score generation algorithm, was used to develop SARICA. Candidate factors were chosen based on objective demographic and clinical factors commonly available at the time of admission. Performance of SARICA was evaluated based on receiver-operating curve (ROC) analyses.
Results: 5970 patients were included, of which 855 (14.3%) survived. A three-variable model was determined to be most parsimonious. Prehospital ROSC, age, and initial heart rhythm were identified for inclusion via random forest selection. Finally, SARICA consisted of these 3 variables and ranged from 0 to 10 points, achieving an area under the ROC (AUC) of 0.87 (95% confidence interval: 0.84-0.90) within the testing cohort.
Conclusion: We developed and internally validated the SARICA score to accurately predict survival of OHCA patients with ROSC at the time of admission. SARICA is clinically practical and developed using an interpretable machine-learning framework. SARICA has unknown generalizability pending external validation studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resuscitation.2021.11.029 | DOI Listing |