A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development and validation of the SARICA score to predict survival after return of spontaneous circulation in out of hospital cardiac arrest using an interpretable machine learning framework. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Accurate and timely prognostication of patients with out-of-hospital cardiac arrest (OHCA) who achieved the return of spontaneous circulation (ROSC) is crucial in clinical decision-making, resource allocation, and communications with next-of-kins. We aimed to develop the Survival After ROSC in Cardiac Arrest (SARICA), a practical clinical decision tool to predict survival in OHCA patients who attained ROSC.

Methods: We utilized real-world Singapore data from the population-based Pan-Asian Resuscitation Outcomes Study between 2010-2018. We excluded patients without ROSC. The dataset was segmented into training (60%), validation (20%) and testing (20%) cohorts. The primary endpoint was survival (to 30-days or hospital discharge). AutoScore, an interpretable machine-learning based clinical score generation algorithm, was used to develop SARICA. Candidate factors were chosen based on objective demographic and clinical factors commonly available at the time of admission. Performance of SARICA was evaluated based on receiver-operating curve (ROC) analyses.

Results: 5970 patients were included, of which 855 (14.3%) survived. A three-variable model was determined to be most parsimonious. Prehospital ROSC, age, and initial heart rhythm were identified for inclusion via random forest selection. Finally, SARICA consisted of these 3 variables and ranged from 0 to 10 points, achieving an area under the ROC (AUC) of 0.87 (95% confidence interval: 0.84-0.90) within the testing cohort.

Conclusion: We developed and internally validated the SARICA score to accurately predict survival of OHCA patients with ROSC at the time of admission. SARICA is clinically practical and developed using an interpretable machine-learning framework. SARICA has unknown generalizability pending external validation studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2021.11.029DOI Listing

Publication Analysis

Top Keywords

predict survival
12
cardiac arrest
12
sarica
8
sarica score
8
return spontaneous
8
spontaneous circulation
8
survival ohca
8
ohca patients
8
patients rosc
8
interpretable machine-learning
8

Similar Publications