A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data.

Methods: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors-age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm3, fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure-were included in the development diagnostic model (P<0.05).

Results: The pool data's model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864-0.921, P<0.0001).

Conclusions: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629274PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260551PLOS

Publication Analysis

Top Keywords

intensive care
16
central nervous
8
nervous system
8
care unit
8
cnsi cases
8
cases validation
8
validation cohort
8
patients
5
cnsi
5
system infection
4

Similar Publications