98%
921
2 minutes
20
Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T-weighted images. We also derived subcortical template "SC21" from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815330 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2021.118759 | DOI Listing |
Neuropsychopharmacology
September 2025
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Severe worry is a transdiagnostic, highly prevalent symptom, difficult to treat and associated with significant morbidity in late life. Understanding the neural correlates of worry induction and reappraisal in older adults is key to developing novel treatments. We recruited 124 older adults ( ≥ 50 years old) with varying worry severity and clinical comorbidity (27% generalized anxiety disorder, 23% depressive disorders).
View Article and Find Full Text PDFEur J Neurol
September 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Background: Frontotemporal dementia (FTD) encompasses diverse clinical phenotypes, primarily characterized by behavioral and/or language dysfunction. A newly characterized variant, semantic behavioral variant FTD (sbvFTD), exhibits predominant right temporal atrophy with features bridging behavioral variant FTD (bvFTD) and semantic variant primary progressive aphasia (svPPA). This study investigates the longitudinal structural MRI correlates of these FTD variants, focusing on cortical and subcortical structural damage to aid differential diagnosis and prognosis.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Background: The high heterogeneity in vestibular migraine (VM) complicates understanding its precise pathophysiological mechanisms and identifying potential biomarkers. This study investigated the heterogeneity in VM using a newly proposed method called Individualized Differential Structural Covariance Network (IDSCN) analysis.
Methods: Structural T1-weighted MRI scans were performed on 55 patients with VM and 65 healthy controls, and an IDSCN was constructed for each patient.
Neurochirurgie
September 2025
Necker Hospital, Departments of Pediatric Neurosurgery, Radiology, Pediatric Neurology and Anesthesiology; Reference Center for Rare Epilepsies CRéER, Member of ERN Epicare; APHP, Paris, France; Université de Paris Cité, Paris, France; Institut Imagine, INSERM U1163, Paris, France; Paris Kids Can
Introduction: Laser Interstitial Thermal Therapy under MRI control has emerged as a safe and efficient alternative to microsurgery in epilepsy and neurooncology procedures. Yet it has been used only recently in seldom European centers. Here, we report our 4 years' experience with LITT in children (complications, epileptic and oncologic outcomes).
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
Iron-the most abundant magnetic brain substance-is essential for many biological processes, including dopamine and myelin synthesis. Quantitative susceptibility mapping (QSM) MRI has recently linked altered subcortical magnetic susceptibility (χ) to schizophrenia. Since χ is increased by iron and decreased by myelin, abnormal levels of either could underlie these QSM differences.
View Article and Find Full Text PDF