98%
921
2 minutes
20
Liver fibrosis is a common feature of chronic liver disease. Activated hepatic stellate cells (HSCs) are the main drivers of extracellular matrix accumulation in liver fibrosis. Hence, a strategy for regulating HSC activation is crucial in treating liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from various post-natal organs. Therapeutic approaches involving MSCs have been studied extensively in various diseases, including liver disease. MSCs modulate hepatic inflammation and fibrosis and/or differentiate into hepatocytes by interacting directly with immune cells, HSCs, and hepatocytes and secreting modulators, thereby contributing to reduced liver fibrosis. Cell-free therapy including MSC-released secretomes and extracellular vesicles has elicited extensive attention because they could overcome MSC transplantation limitations. Herein, we provide basic information on hepatic fibrogenesis and the therapeutic potential of MSCs. We also review findings presenting the effects of MSC itself and MSC-based cell-free treatments in liver fibrosis, focusing on HSC activation. Growing evidence supports the anti-fibrotic function of either MSC itself or MSC modulators, although the mechanism underpinning their effects on liver fibrosis has not been established. Further studies are required to investigate the detailed mechanism explaining their functions to expand MSC therapies using the cell itself and cell-free treatments for liver fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615475 | PMC |
http://dx.doi.org/10.3390/biomedicines9111598 | DOI Listing |
Metab Brain Dis
September 2025
Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, 1-1 Yanagido, 501-1194, Japan.
Identifying the risk of overt hepatic encephalopathy (OHE) in geriatric patients with cirrhosis remains challenging. This study aimed to investigate the independent factors for OHE development in geriatric cirrhosis and to establish a simple scoring model to identify individuals at risk for OHE. We conducted a retrospective review of geriatric patients with cirrhosis aged ≥ 80 years who were admitted between April 2006 and November 2022.
View Article and Find Full Text PDFRev Med Suisse
August 2025
Service de gastroentérologie et d'hépatologie, Département de médecine, Hôpitaux universitaires de Genève, 1211 Genève 14.
The treatment of metabolic dysfunction-associated steatotic liver disease involves physical activity, weight loss, and management of comorbidities (diabetes, hypertension, dyslipidemia). In 2024, the American Food and Drug Administration provisionally approved resmetirom for metabolic dysfunction-associated steatohepatitis. Other promising molecules are being evaluated (glucagon-like peptide 1 receptor agonists, fibroblast growth factor 21 agonist).
View Article and Find Full Text PDFMol Cell Biol
September 2025
Medical School of Tianjin University, Tianjin, China.
Over the past few decades, liver disease has emerged as one of the leading causes of death worldwide. Liver injury is frequently associated with infections, alcohol consumption, or obesity, which trigger hepatic inflammation and ultimately lead to progressive fibrosis and carcinoma. Although various cell populations contribute to inflammatory and fibrogenic processes in the liver, macrophages serve as a pivotal mediator.
View Article and Find Full Text PDFFront Nutr
August 2025
Emergency Department, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a rising health issue linked to poor diet and gut microbiota dysbiosis. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, high in polyphenols and anti-inflammatory nutrients, may help protect against MASLD. This study examined how adherence to the MIND diet relates to MASLD severity, focusing on hepatic steatosis, fibrosis, insulin resistance, inflammation, and gut microbiota diversity.
View Article and Find Full Text PDFClin Kidney J
September 2025
Department of Nephrology. University Clinical Hospital, INCLIVA, Valencia. RICORS Renal Instituto de salud Carlos III, Valencia. Spain.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.
View Article and Find Full Text PDF