98%
921
2 minutes
20
Few food waste interventions focus on drivers distinct to particular food groups, such as seafood. Given suggestive evidence that seafood may be wasted at exceptionally high rates, and given its environmental, economic and nutritional value, this research provides insights into seafood-specific consumer food waste interventions. We performed three complementary sub-studies to examine consumer and retailer views regarding seafood waste and frozen seafood as well as perceptions of an intervention providing chef-created recipes to promote cooking frozen seafood without defrosting. The findings indicated an openness to a direct-from-frozen intervention among many consumers and retailers, and suggested seven potential barriers to adoption, along with ways to address them. Underlying the potential for this intervention, and more broadly contributing to addressing consumer seafood waste, the research formed the basis of a new "4 Ps" concept model to characterize the drivers of discarded seafood: proficiency, perceptions/knowledge, perishability, and planning/convenience. These factors shape waste through pathways that include behavioral protocols; taste preferences; waste-prevention efforts; and food safety concerns, precautions, and errors. This research suggested the benefit of testing a larger-scale direct-from-frozen intervention using insights from the concept model and, more broadly, the benefits of exploring approaches to food waste prevention rooted in specific food groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618751 | PMC |
http://dx.doi.org/10.3390/foods10112524 | DOI Listing |
Compr Rev Food Sci Food Saf
September 2025
Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
Microbial spoilage and oxidation are significant causes of food deterioration, contributing to food waste of up to 30%. To mitigate these losses, active food packaging is an effective solution. Considering the excellent properties of nanofibers produced by electrospinning, integrating active food packaging functionality with nanofiber technology offers an ideal approach enhancing preservation.
View Article and Find Full Text PDFFood Chem X
August 2025
Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
Basil seed gum (BSG) is a natural, biodegradable hydrocolloid derived from basil seeds with promising applications in food packaging. Due to its biocompatibility, film-forming capacity, and favorable mechanical and barrier properties, BSG is an eco-friendly alternative to synthetic packaging. This review highlights the development and functional properties of BSG-based films and coatings, especially for preserving perishable foods like seafood, meat, poultry, fruits, and fried products.
View Article and Find Full Text PDFBioresour Technol
September 2025
Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; Technology Innovation Center for High-Efficiency Utilization of Bamboo-Based Biomass in Guizhou Province, Guiyang 550025, China. Electronic address:
Worldwide, marine shell waste generated from the seafood industry has emerged as a significant environmental challenge. Indeed, this shell waste represents an abundant source of various valuable products, particularly chitin. However, the extraction and subsequent processing of chitin are hindered by the inherently resistant structure of these chitin-rich feedstocks, coupled with strong hydrogen bonding between chitin chains.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
Separation of easily degradable bioactive compound of astaxanthin (AXT) from nature source with low content and several interfering carotenoid analogues is particularly challenge. Here, four mesoporous metal-organic frameworks (meso-MOFs) is reported with different pore chemistry and pore geometry of cage-type and channel-type feature for AXT adsorption and separation. The maximal adsorption capacities of AXT by cage-type PCN-777 and MIL-101-NH are higher than channel-type PCN-222 and NU-1000, and their adsorption capacities (40-469.
View Article and Find Full Text PDFFoods
August 2025
Faculty of Technology Novi Sad, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Serbia.
The colorimetric food freshness indicator (CFFI) is a promising technology in intelligent food packaging, offering the capability for real-time monitoring of food freshness through colorimetric changes. This technology holds significant promise in mitigating food waste and enhancing transparency across the supply chain. This paper provides a comprehensive review of the classification system for the CFFI, encompassing colorimetric films and sensor arrays.
View Article and Find Full Text PDF