A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Antarctic teleosts with and without hemoglobin behaviorally mitigate deleterious effects of acute environmental warming. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent studies forecast that many ectothermic animals, especially aquatic stenotherms, may not be able to thrive or even survive predicted climate change. These projections, however, generally do not call much attention to the role of behavior, an essential thermoregulatory mechanism of many ectotherms. Here we characterize species-specific locomotor and respiratory responses to acute ambient warming in two highly stenothermic Antarctic Notothenioid fishes, one of which (Chaenocephalus aceratus) lacks hemoglobin and appears to be less tolerant to thermal stress as compared to the other (Notothenia coriiceps), which expresses hemoglobin. At the onset of ambient warming, both species perform distinct locomotor maneuvers that appear to include avoidance reactions. In response to unavoidable progressive hyperthermia, fishes demonstrate a range of species-specific maneuvers, all of which appear to provide some mitigation of the deleterious effects of obligatory thermoconformation and to compensate for increasing metabolic demand by enhancing the efficacy of branchial respiration. As temperature continues to rise, Chaenocephalus aceratus supplements these behaviors with intensive pectoral fin fanning which may facilitate cutaneous respiration through its scaleless integument, and Notothenia coriiceps manifests respiratory-locomotor coupling during repetitive startle-like maneuvers which may further augment gill ventilation. The latter behaviors, found only in Notothenia coriiceps, have highly stereotyped appearance resembling Fixed Action Pattern sequences. Altogether, this behavioral flexibility could contribute to the reduction of the detrimental effects of acute thermal stress within a limited thermal range. In an ecologically relevant setting, this may enable efficient thermoregulation of fishes by habitat selection, thus facilitating their resilience in persistent environmental change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612528PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252359PLOS

Publication Analysis

Top Keywords

notothenia coriiceps
12
deleterious effects
8
effects acute
8
ambient warming
8
chaenocephalus aceratus
8
thermal stress
8
maneuvers appear
8
antarctic teleosts
4
teleosts hemoglobin
4
hemoglobin behaviorally
4

Similar Publications