98%
921
2 minutes
20
We previously reported that flagellin-expressing Pseudomonas aeruginosa (Pa) provokes NEU1 sialidase-mediated MUC1 ectodomain (MUC1-ED) desialylation and MUC1-ED shedding from murine lungs in vivo. Here, we asked whether Pa in the lungs of patients with ventilator-associated pneumonia might also increase MUC1-ED shedding. The levels of MUC1-ED and Pa-expressed flagellin were dramatically elevated in bronchoalveolar lavage fluid (BALF) harvested from Pa-infected patients, and each flagellin level, in turn, predicted MUC1-ED shedding in the same patient. Desialylated MUC1-ED was only detected in BALF of Pa-infected patients. Clinical Pa strains increased MUC1-ED shedding from cultured human alveolar epithelia, and FlaA and FlaB flagellin-expressing strains provoked comparable levels of MUC1-ED shedding. A flagellin-deficient isogenic mutant generated dramatically reduced MUC1-ED shedding compared with the flagellin-expressing wild-type strain, and purified FlaA and FlaB recapitulated the effect of intact bacteria. Pa:MUC1-ED complexes were detected in the supernatants of alveolar epithelia exposed to wild-type Pa, but not to the flagellin-deficient Pa strain. Finally, human recombinant MUC1-ED dose-dependently disrupted multiple flagellin-driven processes, including Pa motility, Pa biofilm formation, and Pa adhesion to human alveolar epithelia, while enhancing human neutrophil-mediated Pa phagocytosis. Therefore, shed desialylated MUC1-ED functions as a novel flagellin-targeting, Pa-responsive decoy receptor that participates in the host response to Pa at the airway epithelial surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608881 | PMC |
http://dx.doi.org/10.1038/s41598-021-02242-x | DOI Listing |
iScience
September 2024
Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
(Sm), a multidrug-resistant pathogen often isolated from immunocompromised individuals, presents its flagellin to multimeric tandem repeats within the ectodomain of mucin-1 (MUC1-ED), expressed on airway epithelia. Flagellated Sm increases neuraminidase-1 (NEU1) sialidase association with and desialylation of MUC1-ED. This NEU1-mediated MUC1-ED desialylation unmasks cryptic binding sites for Sm flagellin, increasing flagellin and Sm binding to airway epithelia.
View Article and Find Full Text PDFSci Rep
November 2021
Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
We previously reported that flagellin-expressing Pseudomonas aeruginosa (Pa) provokes NEU1 sialidase-mediated MUC1 ectodomain (MUC1-ED) desialylation and MUC1-ED shedding from murine lungs in vivo. Here, we asked whether Pa in the lungs of patients with ventilator-associated pneumonia might also increase MUC1-ED shedding. The levels of MUC1-ED and Pa-expressed flagellin were dramatically elevated in bronchoalveolar lavage fluid (BALF) harvested from Pa-infected patients, and each flagellin level, in turn, predicted MUC1-ED shedding in the same patient.
View Article and Find Full Text PDFJ Biol Chem
January 2019
Medicine, and.
(Pa) expresses an adhesin, flagellin, that engages the mucin 1 (MUC1) ectodomain (ED) expressed on airway epithelia, increasing association of MUC1-ED with neuraminidase 1 (NEU1) and MUC1-ED desialylation. The MUC1-ED desialylation unmasks both cryptic binding sites for Pa and a protease recognition site, permitting its proteolytic release as a hyperadhesive decoy receptor for Pa. We found here that intranasal administration of Pa strain K (PAK) to BALB/c mice increases MUC1-ED shedding into the bronchoalveolar compartment.
View Article and Find Full Text PDFJ Biol Chem
July 2015
Medicine, and the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201,
Airway epithelia express sialylated receptors that recognize exogenous danger signals. Regulation of receptor responsiveness to these signals remains incompletely defined. Here, we explore the mechanisms through which the human sialidase, neuraminidase-1 (NEU1), promotes the interaction between the sialoprotein, mucin 1 (MUC1), and the opportunistic pathogen, Pseudomonas aeruginosa.
View Article and Find Full Text PDF