A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Physical optics framework for electromagnetic scattering from electrically large targets coated with a uniaxial electric anisotropic medium based on point-source excitation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aiming to determine the scattered estimation of complex and electrically large targets coated with the uniaxial electric anisotropic medium (UEAM) from a distributed excitation source, the demanding study is simplified by constructing the physical optics (PO) architecture which consists of three aspects, the discrete facet modeling, the tangent plane approximation, and the scattering of an infinite PEC plate coated with the UEAM based on point-source excitation, including the electric and magnetic dipole. We depict the outer surface of an electrically large scatterer as the constitution of countless tiny triangular facets. From the tangent plane approximation employed in the PO method, the scattered fields of any discretized facet induced by the equivalent electromagnetic currents (EECs) can be further evaluated as the surface fields of an infinite UEAM-coated PEC slab. Therefore, the rigorous solution of the dyadic Green's function (DGFs) for an infinite anisotropic-medium-coated PEC plate under point-source incidence is computed first. Moreover, characterizing the ray propagation process of the plane wave spectrum, the asymptotic technique of the saddle point is employed to obtain the scattered ray field in the spatial domain. Finally, the total scattered fields are obtained by the field superposition of the overall illuminated facets under point-source excitation. Compared with the reference solution, the proposed method is validated, and the simulation results of the representative shapes coated with the UEAM layer from a point source are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.435468DOI Listing

Publication Analysis

Top Keywords

electrically large
12
point-source excitation
12
physical optics
8
large targets
8
targets coated
8
coated uniaxial
8
uniaxial electric
8
electric anisotropic
8
anisotropic medium
8
based point-source
8

Similar Publications