Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study was designed to delineate the functional significance of CCL21 in metabolic reprogramming in experimental arthritis and differentiated rheumatoid arthritis (RA) macrophages (MΦs). To characterize the influence of CCL21 on immunometabolism, its mechanism of action was elucidated by dysregulating glucose uptake in preclinical arthritis and RA MΦs. In CCL21 arthritic joints, the glycolytic intermediates hypoxia-inducible factor 1α (HIF1α), cMYC and GLUT1 were overexpressed compared with oxidative regulators estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)-α. Interestingly, 2-deoxy-D-glucose (2-DG) therapy mitigated CCL21-induced arthritis by restraining the number of joint F4/80 iNOS MΦs without impacting F4/80 Arginase MΦs. Similar to the preclinical findings, blockade of glycolysis negated CCL21-polarized CD14 CD86 GLUT MΦ frequency; however, CD14 CD206 GLUT MΦs were not implicated in this process. In CCL21-induced arthritis and differentiated RA MΦs, the inflammatory imprint was uniquely intercepted by 2-DG via interleukin-6 (IL-6) downregulation. Despite the more expansive inflammatory response of CCL21 in the arthritic joints relative to the differentiated RA MΦs, 2-DG was ineffective in joint tumor necrosis factor-α, IL-1β, CCL2 and CCL5 enrichment. By contrast, disruption of glycolysis markedly impaired CCL21-induced HIF1α and cMYC signaling in arthritic mice. Notably, in RA MΦs, glycolysis interception was directed toward dysregulating CCL21-enhanced HIF1α transcription. Nonetheless, in concurrence with the diminished IL-6 levels, CCL21 differentiation of CD14 CD86 GLUT1 MΦs was reversed by glycolysis and HIIF1α inhibition. Moreover, in the CCL21 experimental arthritis or differentiated RA MΦs, the malfunctioning metabolic machinery was accompanied by impaired oxidative phosphorylation because of reduced PGC1α or peroxisome proliferator-activated receptor-γ expression. CCL21 reconfigures naïve myeloid cells into glycolytic RA CD14 CD86 GLUT IL-6 HIF1α MΦs. Therefore, inhibiting the CCL21/CCR7 pathway may provide a promising therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810694PMC
http://dx.doi.org/10.1111/imcb.12512DOI Listing

Publication Analysis

Top Keywords

ccl21-induced arthritis
12
arthritis differentiated
12
cd14 cd86
12
differentiated mΦs
12
mΦs
11
metabolic reprogramming
8
experimental arthritis
8
ccl21 arthritic
8
arthritic joints
8
hif1α cmyc
8

Similar Publications

This study was designed to delineate the functional significance of CCL21 in metabolic reprogramming in experimental arthritis and differentiated rheumatoid arthritis (RA) macrophages (MΦs). To characterize the influence of CCL21 on immunometabolism, its mechanism of action was elucidated by dysregulating glucose uptake in preclinical arthritis and RA MΦs. In CCL21 arthritic joints, the glycolytic intermediates hypoxia-inducible factor 1α (HIF1α), cMYC and GLUT1 were overexpressed compared with oxidative regulators estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)-α.

View Article and Find Full Text PDF

In rheumatoid arthritis (RA), synovial tissue abundantly expresses CCL21, a chemokine strongly associated with RA susceptibility. In this study, we aimed to characterize the functional significance of CCL21/CCR7 signaling in different phases of RA pathogenesis. We determined that CCR7 is a hallmark of RA M1 synovial fluid (SF) macrophages, and its expression in RA monocytes and in vitro differentiated macrophages is closely associated with disease activity score (DAS28).

View Article and Find Full Text PDF

Objective: To determine the role of CCL21 and its receptor CCR7 in the pathogenesis of rheumatoid arthritis (RA).

Methods: Histologic studies were performed to compare the expression of CCR7 and CCL21 in RA synovial tissue. Next, the role of CCL21 and/or CCR7 in angiogenesis was examined using in vitro chemotaxis, tube formation, and in vivo Matrigel plug assays.

View Article and Find Full Text PDF