98%
921
2 minutes
20
Background: Biobanks are considered primary means+ of supporting contemporary research, in order to deliver personalized and precise diagnostics with public acceptance and participation as a cornerstone for their success.
Aims: This study aims to assess knowledge, perception, and attitudes towards biomedical research and biobanking among students at the University of Jordan.
Methodology: An online questionnaire was designed, developed, and piloted. It was divided into 5 sections that included questions related to issues of biomedical research and biobanking as well as factors influencing the decision to participate.
Results: Responses from 435 students revealed that 52.9% previously heard of biobanks. There was an overwhelming acceptance for participation in biomedical, genetic, and biobanking research. A blood sample was the most preferred for donation. Protection of privacy, informed consent prior to donation, approval of an ethics committee, and trust towards researchers were the most important factors associated with willingness to participate. On the other hand, the vagueness of the type of research performed on the biospecimens and the unavailability of general research results to the donor had a negative connotation. There was no clear agreement on the type of informed consent preferred by students, but to be contacted and informed of research results was preferred by the majority. Students also preferred the disposal of biospecimens and information when deciding to withdraw from participation.
Conclusion: There is strong enthusiasm among students to participate in biomedical research and biobanking with all rights reserved thus providing hope for a very promising future in Jordan.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590123 | PMC |
http://dx.doi.org/10.1186/s12910-021-00719-y | DOI Listing |
Genome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.
JACC Heart Fail
September 2025
Cardiovascular Pathology, Department of Cardiac, Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy. Electronic address:
Eur J Cancer
August 2025
Emory University, Atlanta, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, USA. Electronic address:
Background: Early detection of hematological malignancies improves long-term survival but remains a critical challenge due to heterogeneity in clinical presentation. Chronic inflammation is a key driver in hematologic cancers and is known to induce compensatory microvascular changes. High-resolution, non-invasive retinal imaging can allow the quantification of microvascular changes for the early detection of hematological malignancies.
View Article and Find Full Text PDFMetabolomics
September 2025
Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.
Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.