98%
921
2 minutes
20
The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current COVID-19 outbreak. In this proof-of-concept study, we explored the potential of targeted mass spectrometry (MS) based proteomics for the detection of SARS-CoV-2 proteins in both research samples and clinical specimens. First, we assessed the limit of detection for several SARS-CoV-2 proteins by parallel reaction monitoring (PRM) MS in infected Vero E6 cells. For tryptic peptides of Nucleocapsid protein, the limit of detection was estimated to be in the mid-attomole range (9E-13 g). Next, this PRM methodology was applied to the detection of viral proteins in various COVID-19 patient clinical specimens, such as sputum and nasopharyngeal swabs. SARS-CoV-2 proteins were detected in these samples with high sensitivity in all specimens with PCR Ct values <24 and in several samples with higher CT values. A clear relationship was observed between summed MS peak intensities for SARS-CoV-2 proteins and Ct values reflecting the abundance of viral RNA. Taken together, these results suggest that targeted MS based proteomics may have the potential to be used as an additional tool in COVID-19 diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584957 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259165 | PLOS |
J Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Phys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
September 2025
Faculty of Medicine, University of Prishtina, University Clinical Center of Kosovo, Prishtina, Republic of Kosovo.
Objective: The aim of this study was to assess the association between allergic reactions after COVID-19 vaccination and the history of high-risk allergy, individual predisposing factors such as age and gender, and COVID-19 vaccine type.
Materials And Methods: This retrospective cohort study included 234 adult patients (18 years old and above) who underwent a COVID-19 vaccine allergy test up until February 2023 in a Clinic of Allergy and Clinical Immunology in the University Clinical Center of Kosovo. All patients suspected of allergy underwent skin testing: SPT (skin prick test) and IDT (intradermal test) using either an mRNA (ribonucleic messenger acid) vaccine (BNT162b2, Pfizer-BioNTech) and/or an adenoviral vector vaccine (AZD1222, AstraZeneca).
Influenza Other Respir Viruses
September 2025
Department of Medical Laboratory, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
Objectives: This study compared the diagnostic accuracy of seven different commercial serological assays for COVID-19, using RT-PCR as the gold standard, through meta-analysis and indirect comparison.
Methods: Fifty-seven studies, published from November 2019 to June 2024, were included. The diagnostic performance of IgA, IgG, and total antibody assays for SARS-CoV-2 was assessed.
Arch Pharm (Weinheim)
September 2025
College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China.
The SARS-CoV-2 pandemic has spurred global efforts to develop therapeutic approaches. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and a key target for therapeutic development. In this study, 22 thiosemicarbazone derivatives were synthesized.
View Article and Find Full Text PDF