Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Domain adversarial training has become a prevailing and effective paradigm for unsupervised domain adaptation (UDA). To successfully align the multi-modal data structures across domains, the following works exploit discriminative information in the adversarial training process, e.g., using multiple class-wise discriminators and involving conditional information in the input or output of the domain discriminator. However, these methods either require non-trivial model designs or are inefficient for UDA tasks. In this work, we attempt to address this dilemma by devising simple and compact conditional domain adversarial training methods. We first revisit the simple concatenation conditioning strategy where features are concatenated with output predictions as the input of the discriminator. We find the concatenation strategy suffers from the weak conditioning strength. We further demonstrate that enlarging the norm of concatenated predictions can effectively energize the conditional domain alignment. Thus we improve concatenation conditioning by normalizing the output predictions to have the same norm of features, and term the derived method as Normalized OutpUt coNditioner (NOUN). However, conditioning on raw output predictions for domain alignment, NOUN suffers from inaccurate predictions of the target domain. To this end, we propose to condition the cross-domain feature alignment in the prototype space rather than in the output space. Combining the novel prototype-based conditioning with NOUN, we term the enhanced method as PROtotype-based Normalized OutpUt coNditioner (PRONOUN). Experiments on both object recognition and semantic segmentation show that NOUN can effectively align the multi-modal structures across domains and even outperform state-of-the-art domain adversarial training methods. Together with prototype-based conditioning, PRONOUN further improves the adaptation performance over NOUN on multiple object recognition benchmarks for UDA. Code is available at https://github.com/tim-learn/NOUN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2021.3124674 | DOI Listing |