Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). The (methyl)lanthionine cross-links characteristic to lanthipeptides are essential for their stability and bioactivities. In most bacteria, lanthipeptides are maturated from single precursor peptides encoded in the corresponding biosynthetic gene clusters. However, cyanobacteria engage in combinatorial biosynthesis and encode as many as 80 substrate peptides with highly diverse sequences that are modified by a single lanthionine synthetase into lanthipeptides of different lengths and ring patterns. It is puzzling how a single enzyme could exert control over the cyclization processes of such a wide range of substrates. Here, we used a library of ProcA3.3 precursor peptide variants and show that it is not the enzyme ProcM but rather its substrate sequences that determine the regioselectivity of lanthionine formation. We also demonstrate the utility of trapped ion mobility spectrometry-tandem mass spectrometry (TIMS-MS/MS) as a fast and convenient method to efficiently separate lanthipeptide constitutional isomers, particularly in cases where the isomers cannot be resolved by conventional liquid chromatography. Our data allowed identification of factors that are important for the cyclization outcome, but also showed that there are no easily identifiable predictive rules for all sequences. Our findings provide a platform for future deep learning approaches to allow such prediction of ring patterns of products of combinatorial biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942616PMC
http://dx.doi.org/10.1021/jacs.1c09370DOI Listing

Publication Analysis

Top Keywords

regioselectivity lanthionine
8
lanthionine formation
8
combinatorial biosynthesis
8
ring patterns
8
substrate sequence
4
sequence controls
4
controls regioselectivity
4
formation procm
4
lanthipeptides
4
procm lanthipeptides
4

Similar Publications

Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM.

J Am Chem Soc

November 2021

Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States.

Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). The (methyl)lanthionine cross-links characteristic to lanthipeptides are essential for their stability and bioactivities. In most bacteria, lanthipeptides are maturated from single precursor peptides encoded in the corresponding biosynthetic gene clusters.

View Article and Find Full Text PDF

Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPs formed by the addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb).

View Article and Find Full Text PDF

Product Formation by the Promiscuous Lanthipeptide Synthetase ProcM is under Kinetic Control.

J Am Chem Soc

April 2015

†Department of Biochemistry, ‡Department of Chemistry, and §Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States.

Lanthipeptides are natural products that belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). They contain characteristic lanthionine (Lan) or methyllanthionine (MeLan) structures that contribute to their diverse biological activities. Despite its structurally diverse set of 30 substrates, the highly substrate-tolerant lanthipeptide synthetase ProcM is shown to display high selectivity for formation of a single product from selected substrates.

View Article and Find Full Text PDF

The synthesis of modified tripeptides (S)-Ala-γ-(R)-Glu-X, where X = (R,S) or (R,R) diastereomers of α-benzyl or α-(4-azidobenzyl)lanthionine, was carried out. The chemical strategy involved the enantioselective alkylation of a 4-MeO-phenyloxazoline. The reductive opening of the alkylated oxazolines, followed by cyclization and oxidation, led to four PMB-protected sulfamidates.

View Article and Find Full Text PDF

A methodology for the solid-phase synthesis of the overlapping lanthionine bridges found in many lantibiotics has been developed. A novel Teoc/TMSE-protected lanthionine derivative has been synthesized, and this lanthionine, and an Aloc/allyl-protected lanthionine derivative, have been incorporated into a linear peptide using solid-phase peptide synthesis. Selective deprotection of the silyl protecting groups, followed by sequential cyclization, deprotection of the allyl protecting groups, and further cyclization, enabled the regioselective formation of an analogue of rings D and E of nisin.

View Article and Find Full Text PDF