Local Structure Modulation-Induced Highly Efficient Red-Emitting BaGdYNbO:Mn Phosphors for Warm WLEDs.

Inorg Chem

Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modulating the crystal field environment around the emitting ions is an effective strategy to improve the luminescence performance of the practical effective phosphor materials. Here, smaller Y ions are introduced into substituting the Gd sites in BaGdNbO:Mn phosphor to modify the optical properties, including the enhanced luminescence intensity, redshift, and longer lifetime of the Mn ions. The substitution of smaller Y ions leads to lattice contraction and then strengthens pressure on the local structure, enhances lattice rigidity, and suppresses nonradiative transition. Moreover, the prototype phosphor-converted light-emitting diode (LED) demonstrates a continuous change photoelectric performance with a correlated color temperature of 4883-7876 K and a color rendering index of 64.1-83.2, suggesting that it can be one of the most prospective fluorescent materials applied as a warm red component for white LEDss. Thus, the smaller ion partial substitution can provide a concise approach to modulate the crystal field environment around the emitting ions for excellent luminescence properties of phosphors toward the modern artificial light.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02969DOI Listing

Publication Analysis

Top Keywords

local structure
8
crystal field
8
field environment
8
environment emitting
8
emitting ions
8
smaller ions
8
ions
5
structure modulation-induced
4
modulation-induced highly
4
highly efficient
4

Similar Publications

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

Objective: Aim: The purpose was to identify the morphological features of the great saphenous vein in patients with chronic venous disease of the lower extremities undergoing treatment with endovenous high-frequency electric welding in automatic mode, endovenous laser ablation, and ultrasound-guided microfoam sclerotherapy.

Patients And Methods: Materials and Methods: The material for the comprehensive morphological study consisted of fragments of the great saphenous vein obtained from 32 patients with chronic venous disease of the lower extremities. The material was divided into three groups according to the endovenous treatment techniques applied.

View Article and Find Full Text PDF

Varietal mixtures are a promising agro-ecological approach to stabilizing yields by reducing diseases. The effects of mixtures stem from modifications of epidemiological processes and underestimated plant-plant interactions, which could explain some of the paradoxical observations made in the field. However, the role of plant-plant interactions in modifying bread wheat and durum wheat susceptibility to Septoria tritici blotch remains to be elucidated.

View Article and Find Full Text PDF

We show that the ground state of a weakly charged two-dimensional electron-hole fluid in a strong magnetic field is a broken translation symmetry state with interpenetrating lattices of localized vortices and antivortices in the electron-hole-pair field. The vortices and antivortices carry fractional charges of equal sign but unequal magnitude and have a honeycomb-lattice structure that contrasts with the triangular lattices of superconducting electron-electron-pair vortex lattices. We predict that increasing charge density or a weakening magnetic field drives a vortex delocalization transition that would be signaled experimentally by an abrupt increase in counterflow transport resistance.

View Article and Find Full Text PDF

Imaging Valence Electron Rearrangement in a Chemical Reaction Using Hard X-Ray Scattering.

Phys Rev Lett

August 2025

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.

View Article and Find Full Text PDF