Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Manganese(II) xanthate complexes of the form [Mn(SCOR)(TMEDA)], where TMEDA = tetramethylethylenediamine and R = methyl (), ethyl (), -propyl (), -butyl (), -pentyl (), -hexyl (), and -octyl (), have been synthesized and structures elucidated using single-crystal X-ray diffraction. Complexes - were used as molecular precursors to synthesize manganese sulfide (MnS). Olelyamine-capped nanocrystals have been produced hot injection, while the doctor blading followed by thermolysis yielded thick films. Free-standing polycrystalline powders of MnS are produced by direct thermolysis of precursor powders. All thermolysis techniques produced cubic MnS, as confirmed by powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Magnetic measurements reveal that the α-MnS nanocrystals exhibit ferromagnetic behavior with a large coercive field strength ( 0.723 kOe for 6.8 nm nanocrystals).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552351 | PMC |
http://dx.doi.org/10.1021/acsomega.1c02907 | DOI Listing |