Precise measurements of chromatin diffusion dynamics by modeling using Gaussian processes.

Nat Commun

Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spatiotemporal organization of chromatin influences many nuclear processes: from chromosome segregation to transcriptional regulation. To get a deeper understanding of these processes, it is essential to go beyond static viewpoints of chromosome structures, to accurately characterize chromatin's diffusion properties. We present GP-FBM: a computational framework based on Gaussian processes and fractional Brownian motion to extract diffusion properties from stochastic trajectories of labeled chromatin loci. GP-FBM uses higher-order temporal correlations present in the data, therefore, outperforming existing methods. Furthermore, GP-FBM allows to interpolate incomplete trajectories and account for substrate movement when two or more particles are present. Using our method, we show that average chromatin diffusion properties are surprisingly similar in interphase and mitosis in mouse embryonic stem cells. We observe surprising heterogeneity in local chromatin dynamics, correlating with potential regulatory activity. We also present GP-Tool, a user-friendly graphical interface to facilitate usage of GP-FBM by the research community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548522PMC
http://dx.doi.org/10.1038/s41467-021-26466-7DOI Listing

Publication Analysis

Top Keywords

diffusion properties
12
chromatin diffusion
8
gaussian processes
8
chromatin
5
precise measurements
4
measurements chromatin
4
diffusion
4
diffusion dynamics
4
dynamics modeling
4
modeling gaussian
4

Similar Publications

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

Natural phytoconstituents such as betanin and curcumin have attracted interest for their significant antioxidant and anti-inflammatory properties. Their therapeutic efficacy is notably constrained by inadequate bioavailability and reduced skin permeability. The current study developed an ethosome-based gel system for the delivery of betanin and curcumin, with the objective of improving transdermal penetration and providing sustained anti-inflammatory effects.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO) is a semiconductor with multiferroic properties, synthesized by the sol-gel method. While static high-pressure studies have advanced our understanding of the phase behavior of BiFeO, the effects of dynamic pressure acoustic shock waves remain unexplored. In this study, BiFeO was subjected to 100 shock pulses with 0.

View Article and Find Full Text PDF

Effect of Ni-Doped Induced Stacking Faults on the NTC Properties and Aging Stability of LaNdAlNiO Ceramics.

Small

September 2025

State Key Laboratory of Functional Materials and Devices for Special Environments Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi, 830011, P. R. China.

Owing to its wide bandgap, LaAlO has garnered extensive attention in the field of high-temperature negative temperature coefficient (NTC) thermistors. However, its poor thermal stability and excessively high B value limit the working temperature range. In this work, introducing O 2p and Ni 3d hybrid energy levels into the bandgap is proposed via Ni doping and inducing stacking faults in the crystal structure to narrow the bandgap and enhance aging performance.

View Article and Find Full Text PDF

Density Functional Theory Study of Iron-Oxygen Divacancies in Magnetite (FeO) and Hematite (FeO).

J Phys Chem C Nanomater Interfaces

September 2025

Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.

Density functional theory (DFT) calculations are employed to investigate the formation energies, charge redistribution, and binding energies of iron-oxygen divacancies in magnetite (FeO) and hematite (FeO). For magnetite, we focus on the low-temperature phase to explore variations with local environments. Building on previous DFT calculations of the variations in formation energies for oxygen vacancies with local charge and spin order in magnetite, we extend this analysis to include octahedral iron vacancies before analyzing the iron-oxygen divacancies.

View Article and Find Full Text PDF