98%
921
2 minutes
20
Small-bandwidth n-type PbTe-MnTe alloys effectively modify the valley shape, while it also inevitably aggravates the deterioration of carrier mobility as nonpolar phonons dominate the scattering. It is found that a trace amount of Cu doping can alleviate the compromises among thermoelectric parameters, thereby significantly optimizing the electrical-transport performance near room temperature of n-type PbTe-MnTe alloys. The single-Kane model reveals that the physical origin of performance improvement lies in the carrier mobility enhancement and self-optimization of carrier concentration. The Debye-Callaway model further quantifies the contribution of copper defect scattering to the lattice thermal conductivity. Notably, the high thermoelectric quality factor obtained in this work rationalizes their superior properties and reveals immense potential for achieving higher zT. Herein, an extremely high zT of ∼0.52 at room temperature and a maximum zT of ∼1.2 at 823 K are achieved in 0.3% Cu-intercalated n-type PbTe-MnTe. The mechanism in balancing compromise elaborated in principle contributes to an improvement of thermoelectric properties of the n-type PbTe alloys in a broad temperature range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c17254 | DOI Listing |
ACS Appl Mater Interfaces
November 2021
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
Small-bandwidth n-type PbTe-MnTe alloys effectively modify the valley shape, while it also inevitably aggravates the deterioration of carrier mobility as nonpolar phonons dominate the scattering. It is found that a trace amount of Cu doping can alleviate the compromises among thermoelectric parameters, thereby significantly optimizing the electrical-transport performance near room temperature of n-type PbTe-MnTe alloys. The single-Kane model reveals that the physical origin of performance improvement lies in the carrier mobility enhancement and self-optimization of carrier concentration.
View Article and Find Full Text PDF