Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The assessment of heat transfer is a complex task, especially for operations in the oil and gas industry, due to the harsh and flammable workspace. In light of the limitations of conventional sensors in harsh environments, this paper presents a fiber Bragg grating (FBG)-based sensor for the assessment of the heat transfer rate (HTR) in different liquids. To better understand the phenomenon of heat distribution, a preliminary analysis is performed by constructing two similar scenarios: those with and without the thermal insulation of a styrofoam box. The results indicate the need for a minimum of thermal power to balance the generated heat with the thermal losses of the setup. In this minimum heat, the behavior of the thermal distribution changes from quadratic to linear. To assess such features, the estimation of the specific heat capacity and the thermal conductivity of water are performed from 3 W to 12 W, in 3 W steps, resulting in a specific heat of 1.144 cal/g °C and thermal conductivity of 0.5682 W/m °C. The calibration and validation of the HTR sensor is performed in a thermostatic bath. The method, based on the temperature slope relative to the time curve, allowed for the measurement of HTR in water and Kryo 51 oil, for different heat insertion configurations. For water, the HTR estimation was 308.782 W, which means an uncertainty of 2.8% with the reference value of the cooling power (300 W). In Kryo 51 oil, the estimated heat absorbed by the oil was 4.38 kW in heating and 718.14 kW in cooling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538806 | PMC |
http://dx.doi.org/10.3390/s21206922 | DOI Listing |