A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lignin-based carbon nanofibe rs: Morphologies, properties, and features as substrates for pseudocapacitor electrodes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, lignin-based carbon nanofibers (LCNFs) were for the first time served as substrate for in-situ electrodeposition of polyaniline (PANI) and tested as pseudocapacitor. Two LCNFs with different lignin ratios were designed to distinguish their morphology and structural properties. Next, PANI deposition mechanisms on both LCNFs were investigated and the electrochemical performance of the resulting LCNF/PANIs were evaluated. It was found although LCNF2 was composed of less uniform nanofibers due to more presence of lignin in precursor dope, it had higher tensile strength/modulus than LCNF1 (strength: 34.3MPa to 24.2 MPa; Modulus: 2.40 GPa to 1.45GPa) and was more cost-effective. Particularly, the beaded fibers on LCNF2 contributes to the deposition of PANI with higher specific mass capacitance (612.8 F g to 547.0 F g). Upon assembling into solid-state supercapacitors, the C of LCNF2/PANI device was determined to be 229 F g and the maximum energy density was 11.13Wh kg at a power density of 0.08 kW kg. This work showed LCNF produced from renewable and low-cost lignin could be directly used as substrate for PANI deposition. Moreover, the composition in spinning dope played an important role in determining the performances of resulting pseudocapacitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.108DOI Listing

Publication Analysis

Top Keywords

lignin-based carbon
8
pani deposition
8
carbon nanofibe
4
nanofibe morphologies
4
morphologies properties
4
properties features
4
features substrates
4
substrates pseudocapacitor
4
pseudocapacitor electrodes
4
electrodes work
4

Similar Publications